Carbon-Heteroatom Cross-Coupling via an Electronically Excited Nickel (II) Complex

Author(s):  
Randolph Escobar ◽  
Jeffrey Johannes

<div>While carbon-heteroatom cross coupling reactions have been extensively studied, many methods are specific and</div><div>limited to a set of substrates or functional groups. Reported here is a method that allows for C-O, C-N and C-S cross coupling reactions under one general methodology. We propose that an energy transfer pathway, in which an iridium photosensitizer produces an excited nickel (II) complex, is responsible for the key reductive elimination step that couples aryl halides to 1° and 2° alcohols, anilines, thiophenols, carbamates and sulfonamides.</div>

2019 ◽  
Author(s):  
Randolph Escobar ◽  
Jeffrey Johannes

<div>While carbon-heteroatom cross coupling reactions have been extensively studied, many methods are specific and</div><div>limited to a set of substrates or functional groups. Reported here is a method that allows for C-O, C-N and C-S cross coupling reactions under one general methodology. We propose that an energy transfer pathway, in which an iridium photosensitizer produces an excited nickel (II) complex, is responsible for the key reductive elimination step that couples aryl halides to 1° and 2° alcohols, anilines, thiophenols, carbamates and sulfonamides.</div>


2015 ◽  
Vol 51 (44) ◽  
pp. 9133-9136 ◽  
Author(s):  
Fengli Jin ◽  
Wei Han

A transition-metal-free, ambient-pressure, and general methodology for carbonylative Suzuki coupling has been developed.


2014 ◽  
Vol 10 ◽  
pp. 2821-2826 ◽  
Author(s):  
Claudia Araceli Contreras-Celedón ◽  
Darío Mendoza-Rayo ◽  
José A Rincón-Medina ◽  
Luis Chacón-García

A simple and efficient catalytic system based on a Pd complex of 4-aminoantipyrine, 4-AAP–Pd(II), was found to be highly active for Suzuki–Miyaura cross-coupling of aryl iodides and bromides with phenylboronic acids under mild reaction conditions. Good to excellent product yields from the cross-coupling reaction can be achieved when the reaction is carried out in ethanol, in the open air, using low loading of 4-AAP–Pd(II) as a precatalyst, and in the presence of aqueous K2CO3 as the base. A variety of functional groups are tolerated.


Synlett ◽  
2021 ◽  
Author(s):  
Nana Kim ◽  
Van T. Tran ◽  
Omar Apolinar ◽  
Steven Wisniewski ◽  
Martin Eastgate ◽  
...  

Electron-deficient olefin (EDO) ligands are known to promote a variety of nickel-catalyzed cross-coupling reactions, presumably by accelerating the reductive elimination step and preventing undesired β-hydride elimination. While there is a growing body of experimental and computational evidence elucidating the beneficial effects of EDO ligands, significant gaps remain in our understanding of the underlying coordination chemistry of the Ni–EDO species involved. In particular, most procedures rely on in situ assembly of the active catalyst, and there is a paucity of pre-ligated Ni-EDO precatalysts. Herein, we investigate the 16-electron, heteroleptic nickel complex, Ni(COD)(DMFU), and examine the performance of this complex as a precatalyst in 1,2-diarylation of alkenes.


2019 ◽  
Vol 131 (6) ◽  
pp. 1813-1816 ◽  
Author(s):  
Giuseppe Dilauro ◽  
Andrea Francesca Quivelli ◽  
Paola Vitale ◽  
Vito Capriati ◽  
Filippo Maria Perna

2019 ◽  
Author(s):  
Dengmengfei Xiao ◽  
Lili Zhao ◽  
Diego Andrada

Unstrained cyclic ketones can participate in cooperative Suzuki-Miyaura cross-coupling type reaction using rhodium(I)-based catalyst via C-C bond activation. The regioselectivity indicates a trend where the most substituted side is activated and it is controlled by the beta-substituents. In this work, Density Functional Theory (DFT) calculations have been carried out to disclose the underlying mechanism in the reaction of a ketone series and arylboronate using ylidene as ancillary ligand and pyridine as co-catalysts. The computed energies suggest the reductive elimination step with the highest energy while the reductive elimination has the highest energy barrier. By the means of the Activation Strain Model (ASM) of chemical reactivity, it is found that the ketone strain energy released on the oxidative addition does not control the relativity of the OA reactivity, but indeed is the interaction energy between Rh(I) and C-C bond the ruling effect. The effect of the beta-substituents on regioselectivity has been additionally studied.


Synthesis ◽  
2016 ◽  
Vol 48 (19) ◽  
pp. 3317-3330 ◽  
Author(s):  
Cédric Tresse ◽  
Stéphane Schweizer ◽  
Philippe Bisseret ◽  
Jacques Lalevée ◽  
Gwilherm Evano ◽  
...  

Stereoselective hydrometalation reactions of aryl- and alkyl-substituted trifluoromethylated alkynes with triethylsilane, tributylstannane, and triphenylgermane have been investigated. (E)-α-CF3-Vinylsilanes, -stannanes, and -germanes were obtained under palladium-catalyzed conditions whereas the corresponding (Z)-α-CF3-vinylgermanes were obtained under radical conditions. These reactions proceed in good to excellent yields and possess a broad functional group tolerance. Applications of the (Z)- and (E)-α-CF3-vinylgermanes in palladium-catalyzed cross-coupling reactions with aryl halides having diverse electronic requirements were also investigated. The corresponding (Z)- and (E)-α-CF3-styrenes were obtained as single isomers, thus demonstrating the utility of these versatile synthons for the synthesis of stereodefined trifluoromethylated alkenes.


Author(s):  
Yuan Zhu ◽  
Weisai Zu ◽  
Qing Tian ◽  
Zifeng Cao ◽  
Yu Wei ◽  
...  

Herein, an organoboron photocatalyst, aminoquinolate diarylboron (AQDAB), is utilized collaboratively with nickel catalyst in metallaphotoredox catalyzed C(sp2)–P and C(sp2)–S cross-coupling reactions. This strategy effectively couples aryl halides with diarylphosphine oxides...


Sign in / Sign up

Export Citation Format

Share Document