ChemInform Abstract: Syntheses and Characterization of 5-Substituted Hydantoins and Thiazolines - Implications for Crystal Engineering of Hydrogen Bonded Assemblies. Crystal Structures of 5-(2-Pyridylmethylene)-hydantoin, 5-(2-Pyridylmethylene)-2-thiohyda

ChemInform ◽  
2001 ◽  
Vol 32 (9) ◽  
pp. no-no
Author(s):  
Mubarik Chowdhry ◽  
D. Michael P. Mingos ◽  
Andrew J. P. White ◽  
David J. Williams
Author(s):  
Srinu Tothadi ◽  
Gautam R. Desiraju

The idea of a structural landscape is based on the fact that a large number of crystal structures can be associated with a particular organic molecule. Taken together, all these structures constitute the landscape. The landscape includes polymorphs, pseudopolymorphs and solvates. Under certain circumstances, it may also include multi-component crystals (or co-crystals) that contain the reference molecule as one of the components. Under still other circumstances, the landscape may include the crystal structures of molecules that are closely related to the reference molecule. The idea of a landscape is to facilitate the understanding of the process of crystallization. It includes all minima that can, in principle, be accessed by the molecule in question as it traverses the path from solution to the crystal. Isonicotinamide is a molecule that is known to form many co-crystals. We report here a 2:1 co-crystal of this amide with 3,5-dinitrobenzoic acid, wherein an unusual N−H⋯N hydrogen-bonded pattern is observed. This crystal structure offers some hints about the recognition processes between molecules that might be implicated during crystallization. Also included is a review of other recent results that illustrate the concept of the structural landscape.


1993 ◽  
Vol 328 ◽  
Author(s):  
Mike Zaworotko ◽  
S. Subramanian ◽  
L. R. Macgillivray

ABSTRACTCrystal engineering has been invoked to design structural analogues of two prototypal SHG active solids, p-nitroaniline (pNA) and potassium dihydrogenphosphate (KDP). pNA exists as linear polar strands because of head-to-tail hydrogen bonding between adjacent molecules whereas KDP is a self-assembled hydrogen bonded diamondoid network that becomes polar when the hydrogen bonds align. We detail preparation and crystallographic characterization of two classes of multicomponent solid, organic cation hydrogen sulfates and cocrystals of the cubane cluster [M (CO)3(μ3-OH)]4, which structurally mimic pNA and KDP, respectively. Several of the Multi-component solids are polar and they represent a generic approach to designing new polar materials since one component can be changed without altering the basic architecture within the crystal.


2005 ◽  
Vol 60 (4) ◽  
pp. 363-372 ◽  
Author(s):  
Athanassios K. Boudalis ◽  
Vassilios Nastopoulos ◽  
Catherine P. Raptopoulou ◽  
Aris Terzis ◽  
Spyros P. Perlepes

In order to examine the possibility of using yttrium(III) in the crystal engineering of hydrogenbonded coordination complexes and to compare the molecular and supramolecular YIII/Cl3 or NO3-/DMU chemistry with the already well-developed LnIII/Cl− or NO3−/DMU chemistry (LnIII = lanthanide, DMU = N,N’-dimethylurea), compounds [Y(DMU)6][YCl6] (1) and [Y(NO3)3(DMU)3] (2) have been prepared. The structures of both compounds have been determined by single-crystal Xray diffraction. The structure of 1 consists of octahedral [Y(DMU)6]3+ and [YCl6]3− ions. The YIII ion in 2 is nine-coordinate and ligation is provided by three O-bonded DMU ligands and three bidentate chelating nitrato groups; the coordination polyhedron about the metal can be viewed as a distorted, monocapped square antiprism. The [Y(DMU)6]3+ cations and [YCl6]3− anions self-assemble to form a hydrogen-bonded 3D architecture in 1. Most of the hydrogen-bonding functionalities on the components of 2 create also a 3D network. Two motifs of interionic/intramolecular hydrogen-bonds have been observed: N-H···Cl in 1 and N-H···O(NO3−) in 2. The IR data are discussed in terms of the nature of bonding and the structures of the two complexes


Author(s):  
Noel W. Thomas

A novel analytical approach is proposed for the characterization of organic molecular crystal structures where close packing is an important factor. It requires the identification of a unique reference axis within the crystal, along which three-dimensional space is divided into close-packed blocks (CPB) and junction zones (JZ). The degree of close packing along the reference axis is quantified by a two-dimensional packing function, φ2D, of symmetry determined by the space group. Values of φ2Dreflect the degree of area-filling in planes perpendicular to this axis. The requirement of close packing within CPB allows the planar structures perpendicular to the reference axis to be analysed as tessellations of area-filling molecular-based cells (MBC), which are generally hexagonal. The form of these cells reflects the molecular shape in the cross-section, since their vertices are given by the centres of the voids between molecules. There are two basic types of MBC, Type 1, of glide or pseudo-glide symmetry, and Type 2, which is formed by lattice translations alone and generally requires a short unit-cell axis. MBC at layers of special symmetry are used to characterize the structures in terms of equivalent ellipses with parametersaell,belland χell. The ratioaell/bellallows the established α, β, γ classification to be integrated into the current framework. The values of parametersaellandbellarising from all the structures considered, polynuclear aromatic hydrocarbons (PAH), substituted anthracenes and anthraquinones (SAA) and 2-benzyl-5-benzylidene (BBCP) are mapped onto a universal curve. The division of three-dimensional space into CPB and JZ is fundamentally useful for crystal engineering, since the structural perturbations brought about by substitution at hydrogen positions located within JZ are minimal. A contribution is also made to ongoing debate concerning the adoption of polar space groups, isomorphism and polymorphism.


2016 ◽  
Vol 72 (9) ◽  
pp. 692-696 ◽  
Author(s):  
Christina A. Capacci-Daniel ◽  
Jeffery A. Bertke ◽  
Shoaleh Dehghan ◽  
Rupa Hiremath-Darji ◽  
Jennifer A. Swift

Hydrogen bonding between urea functionalities is a common structural motif employed in crystal-engineering studies. Crystallization of 1,3-bis(3-fluorophenyl)urea, C13H10F2N2O, from many solvents yielded concomitant mixtures of at least two polymorphs. In the monoclinic form, one-dimensional chains of hydrogen-bonded urea molecules align in an antiparallel orientation, as is typical of many diphenylureas. In the orthorhombic form, one-dimensional chains of hydrogen-bonded urea molecules have a parallel orientation rarely observed in symmetrically substituted diphenylureas.


Sign in / Sign up

Export Citation Format

Share Document