Strategies for Crystal Engineering of Polar Solids

1993 ◽  
Vol 328 ◽  
Author(s):  
Mike Zaworotko ◽  
S. Subramanian ◽  
L. R. Macgillivray

ABSTRACTCrystal engineering has been invoked to design structural analogues of two prototypal SHG active solids, p-nitroaniline (pNA) and potassium dihydrogenphosphate (KDP). pNA exists as linear polar strands because of head-to-tail hydrogen bonding between adjacent molecules whereas KDP is a self-assembled hydrogen bonded diamondoid network that becomes polar when the hydrogen bonds align. We detail preparation and crystallographic characterization of two classes of multicomponent solid, organic cation hydrogen sulfates and cocrystals of the cubane cluster [M (CO)3(μ3-OH)]4, which structurally mimic pNA and KDP, respectively. Several of the Multi-component solids are polar and they represent a generic approach to designing new polar materials since one component can be changed without altering the basic architecture within the crystal.

2005 ◽  
Vol 60 (4) ◽  
pp. 363-372 ◽  
Author(s):  
Athanassios K. Boudalis ◽  
Vassilios Nastopoulos ◽  
Catherine P. Raptopoulou ◽  
Aris Terzis ◽  
Spyros P. Perlepes

In order to examine the possibility of using yttrium(III) in the crystal engineering of hydrogenbonded coordination complexes and to compare the molecular and supramolecular YIII/Cl3 or NO3-/DMU chemistry with the already well-developed LnIII/Cl− or NO3−/DMU chemistry (LnIII = lanthanide, DMU = N,N’-dimethylurea), compounds [Y(DMU)6][YCl6] (1) and [Y(NO3)3(DMU)3] (2) have been prepared. The structures of both compounds have been determined by single-crystal Xray diffraction. The structure of 1 consists of octahedral [Y(DMU)6]3+ and [YCl6]3− ions. The YIII ion in 2 is nine-coordinate and ligation is provided by three O-bonded DMU ligands and three bidentate chelating nitrato groups; the coordination polyhedron about the metal can be viewed as a distorted, monocapped square antiprism. The [Y(DMU)6]3+ cations and [YCl6]3− anions self-assemble to form a hydrogen-bonded 3D architecture in 1. Most of the hydrogen-bonding functionalities on the components of 2 create also a 3D network. Two motifs of interionic/intramolecular hydrogen-bonds have been observed: N-H···Cl in 1 and N-H···O(NO3−) in 2. The IR data are discussed in terms of the nature of bonding and the structures of the two complexes


Author(s):  
Kostiantyn V. Domasevitch ◽  
Ganna A. Senchyk ◽  
Andrey B. Lysenko ◽  
Eduard B. Rusanov

The structure of the title salt, ammonium carbamoylcyanonitrosomethanide, NH4 +·C3H2N3O2 −, features the co-existence of different hydrogen-bonding patterns, which are specific to each of the three functional groups (nitroso, carbamoyl and cyano) of the methanide anion. The nitroso O-atoms accept as many as three N—H...O bonds from the ammonium cations [N...O = 2.688 (3)–3.000 (3) Å] to form chains of fused rhombs [(NH4)(O)2]. The most prominent bonds of the carbamoyl groups are mutual and they yield 21 helices [N...O = 2.903 (2) Å], whereas the cyano N-atoms accept hydrogen bonds from sterically less accessible carbamoyl H-atoms [N...N = 3.004 (3) Å]. Two weaker NH4 +...O=C bonds [N...O = 3.021 (2), 3.017 (2) Å] complete the hydrogen-bonded environment of the carbamoyl groups. A Hirshfeld surface analysis indicates that the most important interactions are overwhelmingly O...H/H...O and N...H/H...N, in total accounting for 64.1% of the contacts for the individual anions. The relatively simple scheme of these interactions allows the delineation of the supramolecular synthons, which may be applicable to crystal engineering of hydrogen-bonded solids containing polyfunctional methanide anions.


2006 ◽  
Vol 84 (10) ◽  
pp. 1426-1433 ◽  
Author(s):  
Olivier Lebel ◽  
Thierry Maris ◽  
James D Wuest

Biguanide groups and biguanidinium cations incorporate multiple sites that can donate or accept hydrogen bonds. To assess their ability to associate and to direct the formation of extended hydrogen-bonded networks, we examined the structure of crystals of four compounds in which two neutral biguanide groups or the corresponding cations are attached to the 1,4- and 1,3-positions of phenylene spacers. As expected, all four structures incorporate extensive networks of hydrogen bonds and reveal other reliable features. In particular, (1) neutral biguanide groups favor a roughly planar conformation with an intramolecular hydrogen bond, and they associate as hydrogen-bonded pairs, (2) despite coulombic repulsion, biguanidinium cations can also associate as hydrogen-bonded pairs, and (3) the 1,3-phenylenebis(biguanidinium) dication favors a pincerlike conformation that allows chelation of suitable counterions. However, the precise patterns of hydrogen bonding in the structures vary substantially, limiting the usefulness of biguanide and biguanidinium as groups for directing supramolecular assembly.Key words: bis(biguanide), bis(biguanidinium), structure, hydrogen-bonded network, noncovalent interaction, supramolecular chemistry, crystal engineering.


Author(s):  
Denise Böck ◽  
Andreas Beuchel ◽  
Richard Goddard ◽  
Adrian Richter ◽  
Peter Imming ◽  
...  

AbstractThe synthesis and structural characterization of N-(6-methoxypyridin-3-yl)-4-(pyridin-2-yl)thiazol-2-amine mono-hydrobromide monohydrate (3) and N-(6-methoxypyridin-3-yl)-4-(pyrazin-2-yl)thiazol-2-amine mono-hydrobromide 0.35 methanol solvate (4) are reported. The crystal structures of 3 (monoclinic, space group P21/n, Z = 4) and 4 (monoclinic, space group, C2/c, Z = 8) feature N,4-diheteroaryl 2-aminothiazoles showing similar molecular conformations but different sites of protonation and thus distinctly different intermolecular hydrogen bonding patterns. In 3, Namine–H⋯Br−, N+pyridine–H⋯Owater, and Owater–H⋯Br− hydrogen bonds link protonated N-(6-methoxypyridin-3-yl)-4-(pyridin-2-yl)thiazol-2-amine and water molecules and bromide anions into a three-dimensional hydrogen-bonded network, whereas intermolecular N+methoxypyridine–H⋯Npyrazine hydrogen bonds result in hydrogen-bonded zigzag chains of protonated N-(6-methoxypyridin-3-yl)-4-(pyrazin-2-yl)thiazol-2-amine molecules in 4.


2016 ◽  
Vol 72 (9) ◽  
pp. 692-696 ◽  
Author(s):  
Christina A. Capacci-Daniel ◽  
Jeffery A. Bertke ◽  
Shoaleh Dehghan ◽  
Rupa Hiremath-Darji ◽  
Jennifer A. Swift

Hydrogen bonding between urea functionalities is a common structural motif employed in crystal-engineering studies. Crystallization of 1,3-bis(3-fluorophenyl)urea, C13H10F2N2O, from many solvents yielded concomitant mixtures of at least two polymorphs. In the monoclinic form, one-dimensional chains of hydrogen-bonded urea molecules align in an antiparallel orientation, as is typical of many diphenylureas. In the orthorhombic form, one-dimensional chains of hydrogen-bonded urea molecules have a parallel orientation rarely observed in symmetrically substituted diphenylureas.


Author(s):  
Ivica Cvrtila ◽  
Vladimir Stilinović

The crystal structures of two polymorphs of a phenazine hexacyanoferrate(II) salt/cocrystal, with the formula (Hphen)3[H2Fe(CN)6][H3Fe(CN)6]·2(phen)·2H2O, are reported. The polymorphs are comprised of (Hphen)2[H2Fe(CN)6] trimers and (Hphen)[(phen)2(H2O)2][H3Fe(CN)6] hexamers connected into two-dimensional (2D) hydrogen-bonded networks through strong hydrogen bonds between the [H2Fe(CN)6]2− and [H3Fe(CN)6]− anions. The layers are further connected by hydrogen bonds, as well as through π–π stacking of phenazine moieties. Aside from the identical 2D hydrogen-bonded networks, the two polymorphs share phenazine stacks comprising both protonated and neutral phenazine molecules. On the other hand, the polymorphs differ in the conformation, placement and orientation of the hydrogen-bonded trimers and hexamers within the hydrogen-bonded networks, which leads to different packing of the hydrogen-bonded layers, as well as to different hydrogen bonding between the layers. Thus, aside from an exceptional number of symmetry-independent units (nine in total), these two polymorphs show how robust structural motifs, such as charge-assisted hydrogen bonding or π-stacking, allow for different arrangements of the supramolecular units, resulting in polymorphism.


2020 ◽  
Vol 44 (14) ◽  
pp. 5410-5418 ◽  
Author(s):  
Sunshine Dominic Kurbah ◽  
Ram A. Lal

We report the synthesis and characterization of a new self-assembled VO2-L metallogel. Multi-responsive properties of the gel were also studied and can be used for sensing OH− anions. Bromoperoxidase-like activity of VO2-L metallogel for oxidative bromination reaction was also reported.


1997 ◽  
Vol 53 (3) ◽  
pp. 513-520 ◽  
Author(s):  
G. Ferguson ◽  
P. I. Coupar ◽  
C. Glidewell

4,4′-Isopropylidenediphenol-1,4-diazabicyclo[2.2.2]octane (1/1), (1), C15H16O2.C6H12N2, monoclinic, P2/a, a = 11.385 (2), b = 6.5565 (12), c = 13.076 (2) Å, \beta = 96.240 (11)°, with Z = 2; the two components of the adduct, which each lie across twofold axes, are joined into simple chains via O—H...N hydrogen bonds in a motif with graph set C_{2}^2(17). 4,4′-Oxodiphenol-1,4-diazabicyclo[2.2.2]octane (1/1), (2), C12H10O3.C6H12N2, orthorhombic, P212121, a = 9.4222 (11), b = 11.1886 (15), c = 15.694 (2), with Z = 4; the diamine component is disordered by rotation about the N...N vector, having two orientations [populations 0.76 (1) and 0.24 (1)] rotated by 48 (3)° from coincidence: the components are joined into chains via O—H...N hydrogen bonds in a motif with graph set C_{2}^2(17); pairs of these chains are joined into ladders by C—H...O hydrogen bonds in a motif of graph set R_{2}^2(22). 4,4′-Thiodiphenol-l,4-diazabicyclo[2.2.2]octane (1/1), (3), C12H10O2S.C6H12N2, isomorphous, a = 9.5785 (11), b = 11.4525 (13), c = 15.759 (2) Å (and ipso facto isostructural), with (2); the diamine disorder is characterized by two equally populated orientations related by a rotation about the N...N vector of 37.1 (2)° and pairs of chains are now joined into ladders by C—H...S hydrogen bonds. 4,4′-Thiodiphenol-1,4-diazabicyclo[2.2.2]octane (2/1), (5), (C12H10O2S)2.C6H12N2, monoclinic, P21/n, a = 8.3198 (9), b = 11.4006 (13), c = 15.056 (2) Å, \beta = 104.955 (8)°, with Z = 2; the diamine component of the adduct is disordered across a centre of inversion, and the bisphenol components are linked into chains by O—H...O hydrogen bonds in a motif with graph set C(12). These chains form cross-links via the diamine component by means of O—H...N hydrogen bonds in a C_{3}^3(19) motif to yield sheets within which are large hydrogen-bonded rings described by the unusual graph set R_{8}^8(62).


2014 ◽  
Vol 70 (4) ◽  
pp. 392-395 ◽  
Author(s):  
Inese Sarcevica ◽  
Liana Orola ◽  
Mikelis V. Veidis ◽  
Sergey Belyakov

A new polymorph of the cinnamic acid–isoniazid cocrystal has been prepared by slow evaporation, namely cinnamic acid–pyridine-4-carbohydrazide (1/1), C9H8O2·C6H7N3O. The crystal structure is characterized by a hydrogen-bonded tetrameric arrangement of two molecules of isoniazid and two of cinnamic acid. Possible modification of the hydrogen bonding was investigated by changing the hydrazide group of isoniazidviaanin situreaction with acetone and cocrystallization with cinnamic acid. In the structure of cinnamic acid–N′-(propan-2-ylidene)isonicotinohydrazide (1/1), C9H8O2·C9H11N3O, carboxylic acid–pyridine O—H...N and hydrazide–hydrazide N—H...O hydrogen bonds are formed.


2002 ◽  
Vol 55 (9) ◽  
pp. 561 ◽  
Author(s):  
W. Li ◽  
S.-L. Zheng ◽  
C.-R. Zhu ◽  
Y.-X. Tong ◽  
X.-M. Chen

The interesting three-dimensional hydrogen-bonded self-assembled network of [(CH2)6N4CH3]+ cations and [CoCl4]2– anions has been prepared and structurally characterized. In the title complex, the quaternization of one hexamethylenetetramine nitrogen atom has been trapped, and further stabilized by the large [CoCl4]2– anions, featuring C–H���Cl hydrogen bonds (3.497–3.709 �) between the methylene groups of [(CH2)6N4CH3]+ cations and the chlorine atoms of the [CoCl4]2– anions.


Sign in / Sign up

Export Citation Format

Share Document