3d architecture
Recently Published Documents


TOTAL DOCUMENTS

375
(FIVE YEARS 145)

H-INDEX

41
(FIVE YEARS 7)

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2648
Author(s):  
Jaime Velasco ◽  
Ignacio Parellada-Serrano ◽  
Carlos Molero

This document presents the design and manufacture of a reflectarray (RA) antenna for the Ku-band that is based on a fully-metallic 3D architecture. The reflectarray unit cell is formed by a square-shaped waveguide section ending in a short circuit, which is the reflectarray back ground plane. Each cell has the ability of configuring the phase of its own reflected field by means of resonators perforated on the walls of the cell waveguide section. The resonator-based waveguide cell introduces the 3D character to the design. The geometry of the resonators and the size variation introduces the phase behavior of each cell, thus, conforming the radiation pattern of the reflectarray. This design explores the potential of phase value truncation (six states and two states) and demonstrates that proper pattern results can be obtained with this phase truncation.


ACS Nano ◽  
2021 ◽  
Author(s):  
Alexander S. Zhovmer ◽  
Alexis Manning ◽  
Chynna Smith ◽  
James B. Hayes ◽  
Dylan T. Burnette ◽  
...  

2021 ◽  
Author(s):  
Rachel M McLaughlin ◽  
Amanda Laguna ◽  
Ilayda Top ◽  
Christien Hernadez ◽  
Liane L Livi ◽  
...  

Stroke is a devastating neurological disorder and a leading cause of death and long-term disability. Despite many decades of research, there are still very few therapeutic options for patients suffering from stroke or its consequences. This is partially due to the limitations of current research models, including traditional in vitro models which lack the three-dimensional (3D) architecture and cellular make-up of the in vivo brain. 3D spheroids derived from primary postnatal rat cortex provide an in vivo-relevant model containing a similar cellular composition to the native cortex and a cell-synthesized extracellular matrix. These spheroids are cost-effective, highly reproducible, and can be produced in a high-throughput manner, making this model an ideal candidate for screening potential therapeutics. To study the cellular and molecular mechanisms of stroke in this model, spheroids were deprived of glucose, oxygen, or both oxygen and glucose for 24 hours. Both oxygen and oxygen-glucose deprived spheroids demonstrated many of the hallmarks of stroke, including a decrease in metabolism, an increase in neural dysfunction, and an increase in reactive astrocytes. Pretreatment of spheroids with the antioxidant agent N-acetylcysteine (NAC) mitigated the decrease in ATP seen after 24 hours of oxygen-glucose deprivation. Together, these results show the utility of our 3D cortical spheroid model for studying ischemic injury and its potential for screening stroke therapeutics.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6131
Author(s):  
Donghuang Wang ◽  
Aijun Zhou ◽  
Zhujun Yao ◽  
Xinhui Xia ◽  
Yongqi Zhang

Improving the utilization efficiency of active materials and suppressing the dissolution of lithium polysulfides into the electrolyte are very critical for development of high-performance lithium-sulfur batteries. Herein, a novel strategy is proposed to construct a three-dimensional (3D) N-doped carbon nanotubes (CNTs) networks to support lithium polysulfides (3D-NCNT-Li2S6) as a binder-free cathode for high-performance lithium-sulfur batteries. The 3D N-doped CNTs networks not only provide a conductive porous 3D architecture for facilitating fast ion and electron transport but also create void spaces and porous channels for accommodating active sulfur. In addition, lithium polysulfides can be effectively confined among the networks through the chemical bond between Li and N. Owing to the synergetic effect of the physical and chemical confinement for the polysulfides dissolution, the 3D-NCNT-Li2S6 cathodes exhibit enhanced charge capacity and cyclic stability with lower polarization and faster redox reaction kinetics. With an initial discharge capacity of 924.8 mAh g−1 at 1 C, the discharge capacity can still maintain 525.1 mAh g−1 after 200 cycles, which is better than that of its counterparts.


Author(s):  
Jaime Velasco ◽  
Parellada-Serrano Ignacio ◽  
Molero Carlos

This document presents the design and manufacture of a reflectarray (RA) antenna for the Ku-band, based on a fully-metallic 3D architecture. The reflectarray unit cell is formed by a square-shaped waveguide section ended in a short circuit, that is the reflectarray back ground plane. Each cell has the ability of configuring the phase of its own reflected field by means of resonators perforated on the walls of the cell waveguide section. The resonator-based waveguide cell introduces the 3D character to the design. The geometry of the resonators and its size variation introduces the phase behaviour of each cell, conforming the radiation pattern of the reflectarray. This design explores the potential of phase value truncation (6 states and 2 states), and demonstrates that proper pattern results can be obtained with this phase truncation.


2021 ◽  
pp. 2103304
Author(s):  
Mo Sha ◽  
Huaping Zhao ◽  
Yong Lei
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document