ChemInform Abstract: Zinc-Catalyzed Oxidation of 5-S-Cysteinyldopa to 2,2′-Bi(2H-1,4-benzothiazine): Tracking the Biosynthetic Pathway to Trichochromes, the Characteristic Pigments of Red Hair.

ChemInform ◽  
2010 ◽  
Vol 33 (8) ◽  
pp. no-no
Author(s):  
Alessandra Napolitano ◽  
Paola Di Donato ◽  
Giuseppe Prota
Author(s):  
Ben O. Spurlock ◽  
Milton J. Cormier

The phenomenon of bioluminescence has fascinated layman and scientist alike for many centuries. During the eighteenth and nineteenth centuries a number of observations were reported on the physiology of bioluminescence in Renilla, the common sea pansy. More recently biochemists have directed their attention to the molecular basis of luminosity in this colonial form. These studies have centered primarily on defining the chemical basis for bioluminescence and its control. It is now established that bioluminescence in Renilla arises due to the luciferase-catalyzed oxidation of luciferin. This results in the creation of a product (oxyluciferin) in an electronic excited state. The transition of oxyluciferin from its excited state to the ground state leads to light emission.


2002 ◽  
Vol 69 ◽  
pp. 47-57 ◽  
Author(s):  
Catherine L. R. Merry ◽  
John T. Gallagher

Heparan sulphate (HS) is an essential co-receptor for a number of growth factors, morphogens and adhesion proteins. The biosynthetic modifications involved in the generation of a mature HS chain may determine the strength and outcome of HS–ligand interactions. These modifications are catalysed by a complex family of enzymes, some of which occur as multiple gene products. Various mutant mice have now been generated, which lack the function of isolated components of the HS biosynthetic pathway. In this discussion, we outline the key findings of these studies, and use them to put into context our own work concerning the structure of the HS generated by the Hs2st-/- mice.


Sign in / Sign up

Export Citation Format

Share Document