ChemInform Abstract: Nucleophile-Selective Cross-Coupling Reactions with Vinyl and Alkynyl Bromides on a Dinucleophilic Aromatic Substrate.

ChemInform ◽  
2015 ◽  
Vol 46 (34) ◽  
pp. no-no
Author(s):  
Lu-Ying He ◽  
Mathias Schulz-Senft ◽  
Birk Thiedemann ◽  
Julian Linshoeft ◽  
Paul J. Gates ◽  
...  
2015 ◽  
Vol 2015 (11) ◽  
pp. 2498-2502 ◽  
Author(s):  
Lu-Ying He ◽  
Mathias Schulz-Senft ◽  
Birk Thiedemann ◽  
Julian Linshoeft ◽  
Paul J. Gates ◽  
...  

2013 ◽  
Vol 15 (18) ◽  
pp. 4666-4669 ◽  
Author(s):  
Annika C. J. Heinrich ◽  
Birk Thiedemann ◽  
Paul J. Gates ◽  
Anne Staubitz

ChemInform ◽  
2014 ◽  
Vol 45 (6) ◽  
pp. no-no
Author(s):  
Annika C. J. Heinrich ◽  
Birk Thiedemann ◽  
Paul J. Gates ◽  
Anne Staubitz

ChemInform ◽  
2013 ◽  
Vol 44 (15) ◽  
pp. no-no
Author(s):  
Julian Linshoeft ◽  
Annika C. J. Heinrich ◽  
Stephan A. W. Segler ◽  
Paul J. Gates ◽  
Anne Staubitz

2012 ◽  
Vol 14 (22) ◽  
pp. 5644-5647 ◽  
Author(s):  
Julian Linshoeft ◽  
Annika C. J. Heinrich ◽  
Stephan A. W. Segler ◽  
Paul J. Gates ◽  
Anne Staubitz

2020 ◽  
Author(s):  
Baojian Xiong ◽  
Yue Li ◽  
Yin Wei ◽  
Søren Kramer ◽  
Zhong Lian

Cross-coupling between substrates that can be easily derived from phenols is highly attractive due to the abundance and low cost of phenols. Here, we report a dual nickel/palladium-catalyzed reductive cross-coupling between aryl tosylates and aryl triflates; both substrates can be accessed in just one step from readily available phenols. The reaction has a broad functional group tolerance and substrate scope (>60 examples). Furthermore, it displays low sensitivity to steric effects demonstrated by the synthesis of a 2,2’disubstituted biaryl and a fully substituted aryl product. The widespread presence of phenols in natural products and pharmaceuticals allow for straightforward late-stage functionalization, illustrated with examples such as Ezetimibe and tyrosine. NMR spectroscopy and DFT calculations indicate that the nickel catalyst is responsible for activating the aryl triflate, while the palladium catalyst preferentially reacts with the aryl tosylate.


2020 ◽  
Author(s):  
Chet Tyrol ◽  
Nang Yone ◽  
Connor Gallin ◽  
Jeffery Byers

By using an iron-based catalyst, access to enantioenriched 1,1-diarylakanes was enabled through an enantioselective Suzuki-Miyaura crosscoupling reaction. The combination of a chiral cyanobis(oxazoline) ligand framework and 1,3,5-trimethoxybenzene additive were essential to afford high yields and enantioselectivities in cross-coupling reactions between unactivated aryl boronic esters and a variety of benzylic chlorides, including challenging ortho-substituted benzylic chloride substrates. Mechanistic investigations implicate a stereoconvergent pathway involving carbon-centered radical intermediates.


2018 ◽  
Author(s):  
Yiming Zhao ◽  
Huy van Nguyen ◽  
Louise Male ◽  
Philip Craven ◽  
Benjamin R. Buckley ◽  
...  

<div>Twelve 1,5-disubtituted and fourteen 5-substituted 1,2,3-triazole derivatives bearing diaryl or dialkyl phosphines at the 5-position were synthesised and used as ligands for palladium-catalysed Suzuki-Miyaura cross-coupling reactions. Bulky substrates were tested, and lead-like product formation was demonstrated. The online tool SambVca 2.0 was used to assess steric parameters of ligands and preliminary buried volume determination using XRD obtained data in a small number of cases proved to be informative. Two modelling approaches were compared for the determination of</div><div>the buried volume of ligands where XRD data was not available. An approach with imposed steric restrictions was found to be superior in leading to buried volume determinations that closely correlate with observed reaction conversions. The online tool LLAMA was used to determine lead-likeness of potential Suzuki-Miyaura cross-coupling products, from which ten of the most lead-like were successfully synthesised. Thus, confirming these readily accessible triazole-containing phosphines as highly suitable ligands for reaction screening and optimisation in drug discovery campaigns.</div>


Sign in / Sign up

Export Citation Format

Share Document