scholarly journals Analysis of a coupled fluid‐structure interaction model of the left atrium and mitral valve

Author(s):  
Liuyang Feng ◽  
Hao Gao ◽  
Boyce Griffith ◽  
Steven Niederer ◽  
Xiaoyu Luo
2013 ◽  
Vol 71 ◽  
pp. 417-425 ◽  
Author(s):  
Xingshuang Ma ◽  
Hao Gao ◽  
Boyce E. Griffith ◽  
Colin Berry ◽  
Xiaoyu Luo

Author(s):  
Mohd Azrul Hisham Mohd Adib ◽  
Nur Hazreen Mohd Hasni

The objectives of this study are to observe the deformation of mitral leaflet in systole condition and compare the rigidity of heart valve leaflet during systole and diastole conditions. Two-dimensional model of the mitral valve leaflet with ventricle were created using fluid structure interaction model in computational simulations. The result shows rigidity of heart valve leaflet always opposite to degeneration and the simulated displacement models corresponded to normal deformation in physical heart valve in systole condition. Modeling simulation techniques are very useful in the study of degenerative heart valve and the findings would allow us to optimize feature and geometries to reduced deformation of heart valve failure.


Author(s):  
K. D. Lau ◽  
G. Burriesci ◽  
V. Díaz-Zuccarini

The most common dysfunction of the mitral valve (MV) is mitral valve regurgitation (MVR) which accounts for approximately 70% of native MV dysfunction [1]. During closure, abnormal amounts of retrograde flow enter the left atrium altering ventricular haemodynamics, an issue which can lead to cardiac related pathologies. MVR is caused by a variety of different mechanisms which are either degenerative (myxomatous degeneration) or functional (annular dilation or papillary muscle displacement) [2]. Correction of MVR is performed by repairing existing valve anatomy or replacement with a prosthetic substitute, however repair is preferred as mortality rates are reduced (2.0% against 6.1% for replacement) along with other valve related complications [3]. A common and popular method of repair is the edge-to-edge repair (ETER), which aims to correct MVR by surgically connecting the regurgitant region through reducing the inter-leaflet distance. Although MV function is improved in systole, induced stresses are significantly increased in diastole where the MV is typically in a low state of stress. In order to assess the effect of this technique in diastole, where the dynamics of both the MV and ventricular filling are disrupted it is required to use fluid-structure interaction (FSI) modelling techniques. Here a FSI model of the of the MV has been described, using this model the resulting induced stresses from the ETER in both functional and degenerative states of the MV have been simulated and assessed using the explicit finite element code LS-DYNA.


Author(s):  
Mohammad Khairul Habib Pulok ◽  
Uttam K. Chakravarty

Abstract Rotary-wing aircrafts are the best-suited option in many cases for its vertical take-off and landing capacity, especially in any congested area, where a fixed-wing aircraft cannot perform. Rotor aerodynamic loading is the major reason behind helicopter vibration, therefore, determining the aerodynamic loadings are important. Coupling among aerodynamics and structural dynamics is involved in rotor blade design where the unsteady aerodynamic analysis is also imperative. In this study, a Bo 105 helicopter rotor blade is considered for computational aerodynamic analysis. A fluid-structure interaction model of the rotor blade with surrounding air is considered where the finite element model of the blade is coupled with the computational fluid dynamics model of the surrounding air. Aerodynamic coefficients, velocity profiles, and pressure profiles are analyzed from the fluid-structure interaction model. The resonance frequencies and mode shapes are also obtained by the computational method. A small-scale model of the rotor blade is manufactured, and experimental analysis of similar contemplation is conducted for the validation of the numerical results. Wind tunnel and vibration testing arrangements are used for the experimental validation of the aerodynamic and vibration characteristics by the small-scale rotor blade. The computational results show that the aerodynamic properties of the rotor blade vary with the change of angle of attack and natural frequency changes with mode number.


2018 ◽  
Vol 9 (4) ◽  
pp. 739-751 ◽  
Author(s):  
Anna Maria Tango ◽  
Jacob Salmonsmith ◽  
Andrea Ducci ◽  
Gaetano Burriesci

2018 ◽  
Vol 21 (16) ◽  
pp. 813-823 ◽  
Author(s):  
John T. Wilson ◽  
Lowell T. Edgar ◽  
Saurabh Prabhakar ◽  
Marc Horner ◽  
Raoul van Loon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document