piston compressor
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 48)

H-INDEX

10
(FIVE YEARS 3)

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 53
Author(s):  
Xueying Li ◽  
Peng Ren ◽  
Zhe Zhang ◽  
Xiaohan Jia ◽  
Xueyuan Peng

The pressure-volume diagram (p−V diagram) is an established method for analyzing the thermodynamic process in the cylinder of a reciprocating compressor as well as the fault of its core components including valves. The failure of suction/discharge valves is the most common cause of unscheduled shutdowns, and undetected failure may lead to catastrophic accidents. Although researchers have investigated fault classification by various estimation techniques and case studies, few have looked deeper into the barriers and pathways to realize the level determination of faults. The initial stage of valve failure is characterized in the form of mild leakage; if this is identified at this period, more serious accidents can be prevented. This study proposes a fault diagnosis and severity estimation method of the reciprocating compressor valve by virtue of features extracted from the p−V diagram. Four-dimensional characteristic variables consisting of the pressure ratio, process angle coefficient, area coefficient, and process index coefficient are extracted from the p−V diagram. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were applied to establish the diagnostic model, where PCA realizes feature amplification and projection, then LDA implements feature dimensionality reduction and failure prediction. The method was validated by the diagnosis of various levels of severity of valve leakage in a reciprocating compressor, and further, applied in the diagnosis of two actual faults: Mild leakage caused by the cracked valve plate in a reciprocating compressor, and serious leakage caused by the deformed valve in a hydraulically driven piston compressor for a hydrogen refueling station (HRS).


Author(s):  
Andrii Shtuts ◽  
Katherina Chmih

It is impossible to imagine any modern mechanism in any field of technology that has not been driven by an automated electric drive. In the electric drive, the main element that converts electrical energy into mechanical energy is an electric motor, which is controlled by converters and control devices in order to form static and dynamic characteristics of the electric drive that meet the requirements of the production mechanism. Equipment for the production and use of compressed air is universal and safe, it is widely used in modern industry. Compressed air is used as a source of energy, a medium for cleaning (purging), a means of transportation and even as a source of cold. Air compressors make up more than 80% of the total compressor fleet. Compressed air production and distribution systems in industry consume up to 10% of electricity. Unfortunately, there is an opinion that compressed air is cheap, although only 5-10% of the consumed electricity is spent on useful mechanical work. The cost of producing compressed air is 5-15% of the cost of production, and for some industries reach 30% or more. Reciprocating, centrifugal, and in recent years screw compressors have been widely used as air compression machines. In agricultural production, compressors are used to supply air and gases of the main or by-products of the technological cycle. These machines are common in gas supply systems. Compressors are also widely used in gas turbines. The laboratory stand for research of the piston compressor is modernized. On the basis of technical and economic indicators the electric drive system is selected, the electric motor is calculated and selected, it is checked with heating, overload capacity and start-up conditions, characteristics in statistical and dynamic modes are investigated, and also electric schemes of SAEP of the main lifting mechanism are developed. To verify the correctness of the adopted design methods, modeling was performed in Matlab.


2021 ◽  
pp. 68-72
Author(s):  
А. Prokhorenko ◽  
S. Kravchenko ◽  
E. Solodkii

Combination of information and operational technologies has led to a new way of production, to a new technological revolution, known as Industry 4.0. The Digital Twin plays a central role in this technology. The Digital Twin is a predictive maintenance tool, and allows you to simulate various options for device failures taking into account their operation modes, environmental influences and various degrees of wear. The concept of creating a digital twin of a real physical object of research is proposed - an AJAX DPS-180 internal combustion engine with a gas piston compressor, which is designed to pump gas from gas wells. A feature of its work is autonomous long-term operation in the field with the remoteness of the service personnel, direct environmental impact and ensuring the reliability and stability of work. Therefore, monitoring the parameters of the engine with the subsequent prediction of its failures is especially important. The work on creating a digital twin for AJAX DPS-180 is being carried out in cooperation and with the support of Armco-Engineering, the operator of this equipment. Six stages of the process of creating a digital twin of a given object are shown: collection and preliminary processing of data on the technical state of a real object; early detection of malfunctions, predicting the time of failure; service planning; optimization of financial and time resources for service. Equipping a real object with various sensors made it possible to continuously collect data on its technical condition, and technologies of the industrial Internet of things, such as Big Data and the predictive statistical model, predict failure times with high accuracy. The developed and implemented schemes for equipping an object with data collection equipment and a diagram of the flow of this data in the Internet of Things are presented. The basis of the data collection system is a microcontroller, a set of a crankshaft speed sensor and thermocouples, a multiplexer and 16-bit analog-to-digital converters that convert thermo-EMF of thermocouples. At the moment, channels for measuring the speed, coolant and exhaust gas temperatures have been implemented. It is proposed to use the ThingSpeak server as a remote resource as a cloud aggregator and carrier of this data. The MATLAB mathematical package integrated into the resource is used as a data analyzer.


2021 ◽  
pp. 51-54
Author(s):  

A one-dimensional model for calculating the sliding bearing of a piston engine and compressor is proposed. The results of approximation of the graphs by analytical dependences of the relative eccentricity on the bearing load coefficient for different values of the ratio of the working length of the bearing to the diameter of the crankshaft journal are presented in the form of exponential functions. Keywords: sliding bearing, heat balance, piston compressor, piston engine, friction [email protected]; [email protected]; [email protected]


Machines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 125
Author(s):  
Kuan Thai Aw ◽  
Kim Tiow Ooi

Rotary compressors have been employed in heating and cooling for more than a century and are ubiquitous in daily life but there has not been any comprehensive record of their development and technological advances. This review paper attempts to provide a comprehensive account of the advances in R&D and design evolution of these rotary compressors since their inception, namely the sliding vane compressor, rolling piston compressor, and their design variants in open literature. This is to showcase the current state-of-the-art for these compressors so that researchers can use it as a basis for future work. Based on authors’ insight, inter-disciplinary research combined with advancements in ‘disruptive’ technology such as artificial intelligence and advancements in additive manufacturing might be a promising research direction to bring about improvements in rotary compressor performance to meet mankind’s growing needs for cooling and heating applications.


2021 ◽  
Vol 13 (9) ◽  
pp. 5029
Author(s):  
Jian Sun ◽  
Jianguo Li ◽  
Yuanli Liu ◽  
Zhijie Huang ◽  
Jinghui Cai

Improving compressor efficiency is very important to save energy and reduce greenhouse gas emissions. A novel oil-free dual piston compressor prototype driven by a moving coil linear motor was developed, and its working principle was described in detail. The prototype was integrated with a test rig to measure the operation characteristics, the compressor efficiencies and the coefficient of performance (COP). The results show that the dual piston structure results in extraordinary sinusoidal gas force and electromagnetic force and significantly reduces piston offset, which is completely different from the traditional single piston structure. Compared with the variable frequency method, the variable stroke method has lower energy consumption and a higher COP, which is more suitable to cooling capacity regulation for the prototype. The maximum COP, motor efficiency and volumetric efficiency are 5.34, 87.9% and 79.1%, respectively, under the design condition (the evaporation pressure is 0.35 MPa, and the pressure ratio is 2.54). The COP of the linear compressor is 38%, 24% and 12% higher than the commercial crank-driven reciprocating compressor at the pressure ratios of 2.54, 2.80 and 3.90, respectively, which reflects the efficiency advantage of the dual piston linear compressor in household refrigeration.


2021 ◽  
Vol 9 (2) ◽  
pp. 207 ◽  
Author(s):  
Sergei G. Chernyi ◽  
Pavel Erofeev ◽  
Bogdan Novak ◽  
Vitalii Emelianov

In the article, the mechanical and electromechanical starting characteristics of an asynchronous electric drive of a two-piston ship compressor are investigated by a numerical method. A distinctive feature of the operation of the electric drive of a reciprocating compressor is that its load torque changes with a certain frequency. The dependence of the load torque on the shaft of the electric drive of the piston compressor on the angle of rotation is presented in the form of a Fourier series. Moments of inertia are reduced to a single system that performs a rotary motion. Mechanical and electromechanical starting characteristics are constructed. The estimation of the degree of torque pulsations on the shaft is made. It is determined that the compressor has a large amplitude of torque ripple on the shaft, which, in turn, affects the magnitude of the current ripple in the electric drive.


Sign in / Sign up

Export Citation Format

Share Document