helicopter rotor blade
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 26)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 15 (58) ◽  
pp. 191-201
Author(s):  
Saleemsab Doddamani ◽  
Chao Wang Chao Wang ◽  
M. Sheik Mohamed Jinnah ◽  
Md. Arefin Kowser Md. Arefin Kowser

The main objective of the work is to study the fracture behavior of AA6061-graphite material using both experimental technique and finite element simulation by considering helicopter rotor blade as a case study. From the case study, it has been observed that the helicopter rotor blade, made of AA6061, has been failed at the threaded portion of the hole. Experimental fracture toughness is carried out using the compact tension specimens as per ASTM standard testing procedure. Modeling of compact tension specimens and the threaded portion of the bolt hole was utilized to analyze the fracture toughness using a simulation tool. From the results and the comparison, it is recommended to use AA6061-9wt% graphite material as a replacement of AA6061 in the application of main rotor blades of the helicopter.


2021 ◽  
Author(s):  
Luke Allen ◽  
Joon Lim ◽  
Robert Haehnel ◽  
Ian Dettwiller

This paper presents advancements in a surrogate-based, rotor blade design optimization framework for improved helicopter performance. The framework builds on previous successes by allowing multiple airfoil sections to designed simultaneously to minimize required rotor power in multiple flight conditions. Rotor power in hover and forward flight, at advance ratio 𝜇 = 0.3, are used as objective functions in a multi-objective genetic algorithm. The framework is constructed using Galaxy Simulation Builder with optimization provided through integration with Dakota. Three independent airfoil sections are morphed using ParFoil and aerodynamic coefficients for the updated airfoil shapes (i.e., lift, drag, moment) are calculated using linear interpolation from a database generated using C81Gen/ARC2D. Final rotor performance is then calculated using RCAS. Several demonstrative optimization case studies were conducted using the UH-60A main rotor. The degrees of freedom for this case are limited to the airfoil camber, camber crest position, thickness, and thickness crest position for each of the sections. The results of the three-segment case study show improvements in rotor power of 4.3% and 0.8% in forward flight and hover, respectively. This configuration also yields greater reductions in rotor power for high advance ratios, e.g., 6.0% reduction at 𝜇 = 0.35, and 8.8% reduction at 𝜇 = 0.4.


2021 ◽  
Author(s):  
Michael G. Leahy

Multidisciplinary design optimization (MDO) was performed on a helicopter rotor blade. The blade was modeled as a rigid flapping blade for dynamics; Blade Element Theory (BET) was the analysis approach to model the aerodynamic loading, and a simple linearly elastic hollowed rectangular section was the main structural component. MATLAB was used to solve the flapping differential equations and its Sequential Quadratic Programming (SQP) and Genetic Algorithm (GA) were used for the optimization. A Particle Swarm Optimization (PSO) routine was also tested. The optimization process consisted of three cases. The first case was a simple cantilever beam under centrifugal and an assumed bending loads. The optimization was performed using the SQP, GA, and PSO algorithms. The SQP resulted in the superior design with 75.45 compared to the GA's 87.1 and the PSO's 79.2, but a local minimum was present. The second case was an expansion of the first case by turning it into multidisciplinary problem. Aerodynamics was included in the design variables and objective function. Only the SQP algorithm was used and there was a reduction in hub vertical shear by 33.6%. The blade mass increased by 36.84%. The last case was an improvement to the second by creating a multiobjective problem by including the hub radial shear and the results were improved significantly by reducing the hub vertical shear by 34.06% and radial shear by 17.87% with a reduction of blade mass by 23.86%.


2021 ◽  
Author(s):  
Michael G. Leahy

Multidisciplinary design optimization (MDO) was performed on a helicopter rotor blade. The blade was modeled as a rigid flapping blade for dynamics; Blade Element Theory (BET) was the analysis approach to model the aerodynamic loading, and a simple linearly elastic hollowed rectangular section was the main structural component. MATLAB was used to solve the flapping differential equations and its Sequential Quadratic Programming (SQP) and Genetic Algorithm (GA) were used for the optimization. A Particle Swarm Optimization (PSO) routine was also tested. The optimization process consisted of three cases. The first case was a simple cantilever beam under centrifugal and an assumed bending loads. The optimization was performed using the SQP, GA, and PSO algorithms. The SQP resulted in the superior design with 75.45 compared to the GA's 87.1 and the PSO's 79.2, but a local minimum was present. The second case was an expansion of the first case by turning it into multidisciplinary problem. Aerodynamics was included in the design variables and objective function. Only the SQP algorithm was used and there was a reduction in hub vertical shear by 33.6%. The blade mass increased by 36.84%. The last case was an improvement to the second by creating a multiobjective problem by including the hub radial shear and the results were improved significantly by reducing the hub vertical shear by 34.06% and radial shear by 17.87% with a reduction of blade mass by 23.86%.


Eng ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 69-79
Author(s):  
Arunabha M. Roy

In the present study, a three-dimensional finite element framework has been developed to model a full-scale multilaminate composite helicopter rotor blade. Tip deformation and stress behavior have been analyzed for external aerodynamic loading conditions and compared with the Abaqus FEA model. Furthermore, different parametric studies of geometric design parameters of composite laminates are studied in order to minimize tip deformation and maximize the overall efficiency of the helicopter blade. It is found that these parameters significantly influence the tip deformation characteristic and can be judiciously chosen for the efficient design of the rotor blade system.


Sign in / Sign up

Export Citation Format

Share Document