scholarly journals A verifiable ranked ciphertext retrieval scheme based on bilinear mapping

Author(s):  
Baohua Huang ◽  
Pirong Huang ◽  
Hong Yuan ◽  
Sheng Liang
2021 ◽  
Vol 13 (1) ◽  
pp. 152
Author(s):  
Haklim Choi ◽  
Xiong Liu ◽  
Gonzalo Gonzalez Abad ◽  
Jongjin Seo ◽  
Kwang-Mog Lee ◽  
...  

Clouds act as a major reflector that changes the amount of sunlight reflected to space. Change in radiance intensity due to the presence of clouds interrupts the retrieval of trace gas or aerosol properties from satellite data. In this paper, we developed a fast and robust algorithm, named the fast cloud retrieval algorithm, using a triplet of wavelengths (469, 477, and 485 nm) of the O2–O2 absorption band around 477 nm (CLDTO4) to derive the cloud information such as cloud top pressure (CTP) and cloud fraction (CF) for the Geostationary Environment Monitoring Spectrometer (GEMS). The novel algorithm is based on the fact that the difference in the optical path through which light passes with regard to the altitude of clouds causes a change in radiance due to the absorption of O2–O2 at the three selected wavelengths. To reduce the time required for algorithm calculations, the look-up table (LUT) method was applied. The LUT was pre-constructed for various conditions of geometry using Vectorized Linearized Discrete Ordinate Radiative Transfer (VLIDORT) to consider the polarization of the scattered light. The GEMS was launched in February 2020, but the observed data of GEMS have not yet been widely released. To evaluate the performance of the algorithm, the retrieved CTP and CF using observational data from the Global Ozone Monitoring Experiment-2 (GOME-2), which cover the spectral range of GEMS, were compared with the results of the Fast Retrieval Scheme for Clouds from the Oxygen A band (FRESCO) algorithm, which is based on the O2 A-band. There was good agreement between the results, despite small discrepancies for low clouds.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 25
Author(s):  
Kai Wan ◽  
Hua Sun ◽  
Mingyue Ji ◽  
Daniela Tuninetti ◽  
Giuseppe Caire

Coded Caching, proposed by Maddah-Ali and Niesen (MAN), has the potential to reduce network traffic by pre-storing content in the users’ local memories when the network is underutilized and transmitting coded multicast messages that simultaneously benefit many users at once during peak-hour times. This paper considers the linear function retrieval version of the original coded caching setting, where users are interested in retrieving a number of linear combinations of the data points stored at the server, as opposed to a single file. This extends the scope of the authors’ past work that only considered the class of linear functions that operate element-wise over the files. On observing that the existing cache-aided scalar linear function retrieval scheme does not work in the proposed setting, this paper designs a novel coded caching scheme that outperforms uncoded caching schemes that either use unicast transmissions or let each user recover all files in the library.


2014 ◽  
Vol 14 (23) ◽  
pp. 12613-12629 ◽  
Author(s):  
P. Eriksson ◽  
B. Rydberg ◽  
H. Sagawa ◽  
M. S. Johnston ◽  
Y. Kasai

Abstract. Retrievals of cloud ice mass and humidity from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and the Odin-SMR (Sub-Millimetre Radiometer) limb sounder are presented and example applications of the data are given. SMILES data give an unprecedented view of the diurnal variation of cloud ice mass. Mean regional diurnal cycles are reported and compared to some global climate models. Some improvements in the models regarding diurnal timing and relative amplitude were noted, but the models' mean ice mass around 250 hPa is still low compared to the observations. The influence of the ENSO (El Niño–Southern Oscillation) state on the upper troposphere is demonstrated using 12 years of Odin-SMR data. The same retrieval scheme is applied for both sensors, and gives low systematic differences between the two data sets. A special feature of this Bayesian retrieval scheme, of Monte Carlo integration type, is that values are produced for all measurements but for some atmospheric states retrieved values only reflect a priori assumptions. However, this "all-weather" capability allows a direct statistical comparison to model data, in contrast to many other satellite data sets. Another strength of the retrievals is the detailed treatment of "beam filling" that otherwise would cause large systematic biases for these passive cloud ice mass retrievals. The main retrieval inputs are spectra around 635/525 GHz from tangent altitudes below 8/9 km for SMILES/Odin-SMR, respectively. For both sensors, the data cover the upper troposphere between 30° S and 30° N. Humidity is reported as both relative humidity and volume mixing ratio. The vertical coverage of SMILES is restricted to a single layer, while Odin-SMR gives some profiling capability between 300 and 150 hPa. Ice mass is given as the partial ice water path above 260 hPa, but for Odin-SMR ice water content, estimates are also provided. Besides a smaller contrast between most dry and wet cases, the agreement with Aura MLS (Microwave Limb Sounder) humidity data is good. In terms of tropical mean humidity, all three data sets agree within 3.5 %RHi. Mean ice mass is about a factor of 2 lower compared to CloudSat. This deviation is caused by the fact that different particle size distributions are assumed, combined with saturation and a priori influences in the SMILES and Odin-SMR data.


2021 ◽  
Author(s):  
Miriam Latsch ◽  
Andreas Richter ◽  
John P. Burrows ◽  
Thomas Wagner ◽  
Holger Sihler ◽  
...  

<p>The first European Sentinel satellite for monitoring the composition of the Earth’s atmosphere, the Sentinel 5 Precursor (S5p), carries the TROPOspheric Monitoring Instrument (TROPOMI) to map trace species of the global atmosphere at high spatial resolution. Retrievals of tropospheric trace gas columns from satellite measurements are strongly influenced by clouds. Thus, cloud retrieval algorithms were developed and implemented in the trace gas processing chain to consider this impact.</p><p>In this study, different cloud products available for NO<sub>2</sub> retrievals based on the TROPOMI level 1b data version 1 and an updated TROPOMI level 1b test data set of version 2 (Diagnostic Data Set 2B, DDS2B) are analyzed. The data sets include a) the TROPOMI level 2 OCRA/ROCINN (Optical Cloud Recognition Algorithm/Retrieval of Cloud Information using Neural Networks) cloud products CRB (cloud as reflecting boundaries) and CAL (clouds as layers), b) the FRESCO (Fast Retrieval Scheme for Clouds from Oxygen absorption bands) cloud product,  c) the cloud fraction from the NO<sub>2</sub> fitting window, d) the VIIRS (Visible Infrared Imaging Radiometer Suite) cloud product, and e) the MICRU (Mainz Iterative Cloud Retrieval Utilities) cloud fraction. The cloud products are compared with regard to cloud fraction, cloud height, cloud albedo/optical thickness, flagging and quality indicators in all 4 seasons. In particular, the differences of the cloud products under difficult situations such as snow or ice cover and sun glint are investigated.</p><p>We present results of a statistical analysis on a limited data set comparing cloud products from the current and the upcoming lv2 data versions and their approaches. The aim of this study is to better understand TROPOMI cloud products and their quantitative impacts on trace gas retrievals.</p>


Sign in / Sign up

Export Citation Format

Share Document