Chaos teaching learning based algorithm for large‐scale global optimization problem and its application

Author(s):  
Alok Kumar Shukla



2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Weixiang Wang ◽  
Youlin Shang ◽  
Ying Zhang

A filled function approach is proposed for solving a non-smooth unconstrained global optimization problem. First, the definition of filled function in Zhang (2009) for smooth global optimization is extended to non-smooth case and a new one is put forwarded. Then, a novel filled function is proposed for non-smooth the global optimization and a corresponding non-smooth algorithm based on the filled function is designed. At last, a numerical test is made. The computational results demonstrate that the proposed approach is effcient and reliable.



2014 ◽  
Vol 24 (3) ◽  
pp. 535-550 ◽  
Author(s):  
Jiaqi Zhao ◽  
Yousri Mhedheb ◽  
Jie Tao ◽  
Foued Jrad ◽  
Qinghuai Liu ◽  
...  

Abstract Scheduling virtual machines is a major research topic for cloud computing, because it directly influences the performance, the operation cost and the quality of services. A large cloud center is normally equipped with several hundred thousand physical machines. The mission of the scheduler is to select the best one to host a virtual machine. This is an NPhard global optimization problem with grand challenges for researchers. This work studies the Virtual Machine (VM) scheduling problem on the cloud. Our primary concern with VM scheduling is the energy consumption, because the largest part of a cloud center operation cost goes to the kilowatts used. We designed a scheduling algorithm that allocates an incoming virtual machine instance on the host machine, which results in the lowest energy consumption of the entire system. More specifically, we developed a new algorithm, called vision cognition, to solve the global optimization problem. This algorithm is inspired by the observation of how human eyes see directly the smallest/largest item without comparing them pairwisely. We theoretically proved that the algorithm works correctly and converges fast. Practically, we validated the novel algorithm, together with the scheduling concept, using a simulation approach. The adopted cloud simulator models different cloud infrastructures with various properties and detailed runtime information that can usually not be acquired from real clouds. The experimental results demonstrate the benefit of our approach in terms of reducing the cloud center energy consumption





2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Zong-Sheng Wu ◽  
Wei-Ping Fu ◽  
Ru Xue

Teaching-learning-based optimization (TLBO) algorithm is proposed in recent years that simulates the teaching-learning phenomenon of a classroom to effectively solve global optimization of multidimensional, linear, and nonlinear problems over continuous spaces. In this paper, an improved teaching-learning-based optimization algorithm is presented, which is called nonlinear inertia weighted teaching-learning-based optimization (NIWTLBO) algorithm. This algorithm introduces a nonlinear inertia weighted factor into the basic TLBO to control the memory rate of learners and uses a dynamic inertia weighted factor to replace the original random number in teacher phase and learner phase. The proposed algorithm is tested on a number of benchmark functions, and its performance comparisons are provided against the basic TLBO and some other well-known optimization algorithms. The experiment results show that the proposed algorithm has a faster convergence rate and better performance than the basic TLBO and some other algorithms as well.



Sign in / Sign up

Export Citation Format

Share Document