Investigations on the performance of distributed Raman amplifier in dense wavelength division multiplexed communication system using different modulation formats

Author(s):  
Shameem Saifuddin ◽  
Sivasubramanian Arunagiri
2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Farman Ali ◽  
Yousaf Khan ◽  
Shahryar Shafique Qureshi

AbstractHigher spectral efficiency and data rate per channel are the most cost-effective approaches to meet the exponential demand of data traffic in optical fiber network communication system. In this paper, diverse modulation formats are analyzed for Dense Wavelength Division Multiplexed system at 100 Gbps * 16=1600 Gbps data rates. The performance analysis of proffered system for Non-Return to Zero, Return to Zero, Carrier- Suppressed Return to Zero and Duo binary RZ with duty cycle 0.5 to 0.7 ranges like modulation formats are considered to find optimum modulation format for a 100 Gbps bit rate per channel optical fiber transmission network system. The simulations are analyzed for different values of input power, length of fiber, nonlinear refractive index, nonlinear dispersion and nonlinear effective area for all above mentioned modulation formats with spacing 100 to 250 GHz. to evaluate the effect of modulation format Fiber Bragg Gratting, optical fiber amplifier and Dispersion Compensation Fiber dispersion compensation techniques are enacted on this proposed optical network system.


2005 ◽  
Author(s):  
Silvia Diaz ◽  
Gorka Lasheras ◽  
Manuel Lopez-Amo ◽  
Paul Urquhart ◽  
Cesar Jauregui ◽  
...  

2019 ◽  
Vol 40 (3) ◽  
pp. 315-322
Author(s):  
Kulwinder Singh ◽  
Navpreet Singh ◽  
Kamaljit Singh Bhatia ◽  
Hardeep Singh Ryait

Abstract Different modulation formats for 64×20-GB/s dense wavelength division multiplexed (DWDM) system has been compared and simulated using Optsim. Various performance parameters including Q-factor, bit error rate, jitter, eye opening & eye closure are observed and analyzed. It is reported that RZ Soliton format is a better choice among the tested formats. Also, for the proposed system, minimum channel spacing should be 50 GHz.


2021 ◽  
Author(s):  
Ebrahim E. Elsayed

Abstract In this paper, the implementation of a dense wavelength division multiplexing (DWDM) 32 × 40 Gbps (1.28 Tera bit/s) for the free-space optical (FSO) communication system is investigated. Analysis is performed for return-to-zero (RZ) and non-return-to-zero (NRZ) line codes for 1 km free space optic length. Motivation to the current analysis is to compare RZ and NRZ lines codes in the DWDM-FSO communication system and it is found that the NRZ line code is better than RZ code. A 1.28 Tb/ps wavelength division multiplexed communication system for free space optic channel workplace has been discovered in which 32 channel each of 40 Gbps data streams are combined using wavelength division multiplexed. The study includes the attenuation caused by atmospheric effect and beam divergence. Bit-error rate (BER), quality factor (Q), and eye diagram are indicator of performance evaluation. By comparing one can get a promising system to the high capacity access network with more bandwidth, cost effective and good flexibility.


Author(s):  
. Payal ◽  
Suresh Kumar ◽  
Deepak Sharma

Dense Wavelength Division Multiplexing (DWDM) is the current area of interest to exploit the bandwidth offered by optical fiber to enhance the data rate requirements. In the present paper analysis of DWDM system using Erbium Doped Fiber Amplifier (EDFA) is carried out in C-band. The 32-channel Wavelength Division Multiplexing (WDM) system, with a high-performanceflowrate of 10 Gbps, has been evaluated. The performance of Return to Zero (RZ) and Non-Return to Zero (NRZ) modulation formats in an optical communication system are investigated by modeling an optical fiber link using software OPTISYS V14. According to the modulated outputs, a comprehensive comparison in terms of Q factor is developed to establish the advantages and disadvantages of the code formats NRZ and RZ in short and long haul optical fiber communication system. Optimum results of Bit Error Rate (BER) and Q-factor are obtained for 60, 80 and 100km of fiber length. Pumping is discussed at 980nm and 1480nm.


2020 ◽  
Vol 26 (2) ◽  
pp. 85-93 ◽  
Author(s):  
Toms Salgals ◽  
Andis Supe ◽  
Vjaceslavs Bobrovs ◽  
Jurgis Porins ◽  
Sandis Spolitis

The exponential growth of data traffic related to the progress of newest technologies (e.g., 4K/8K live stream videos, virtual reality (VR) applications, etc.), new services, and a fast-growing number of end-users require higher bandwidth and increase of user bitrate, as a result pushing hard the telecommunication infrastructure for upgrading. Expected usage of more complex modulation formats in fiber optical link infrastructure for cellular network transmission and data center interconnections (DCI) are still affected with fundamental chromatic dispersion influence on the signal quality, which consequently increases bit error rate (BER). We experimentally demonstrate a real-time comparison of commercially used dispersion compensation techniques for 100 GHz spaced dense wavelength division multiplexed (DWDM) optical transmission system with a total transmission speed capacity of 160 Gbit/s.


Sign in / Sign up

Export Citation Format

Share Document