optical fiber communication
Recently Published Documents


TOTAL DOCUMENTS

719
(FIVE YEARS 163)

H-INDEX

25
(FIVE YEARS 5)

2021 ◽  
Vol 5 (2) ◽  
pp. 90-103
Author(s):  
Nawroz Hamadamen

This paper investigates for rising optical fiber transmission strength, increasing bandwidth, and decreasing communication system weakness by using wavelength division multiplexing (WDM). WDM gives today's distention speed and communication traffic. Systems using WDM faces nonlinearities, which the most intensive nonlinear attack is, four wave mixing (FWM). FWM creates and increases crosstalk between WDM channels as a result slows down and impairs the performance of the communication system. This investigation uses orthogonal frequency division multiplexing (OFDM) for evaluating execution of WDM fiber system by repairing Polarization Mode Dispersion (PMD). We took results in the case of trying PMD-Emulator and without trying PMD-Emulator in the system design. We compared the results got in both cases. Furthermore, we compared the performance of the system with the investigations done using different ways, methods, and techniques for compensating PMD and FWM appears in WDM systems. As PMD-Emulator, helps enhancing the system design performance, and OFDM gives the feature of robustness and useful execution to the system. OFDM examined by appointing interfered orthogonal signal sets, for 16 channels; with equally spaced OFDM channels. Oure results showed that the optical fiber communication system using OFDM technique gives perfect removing FWM signal crosstalk, and accurate data transmission, comparing to other techniques used in other researches. We got a decreased FWM power to -77dBm, and the BER of -0.317. Furthermore, the system quality increased with applying PMD-Emulator and OFDM. In addition, using PMD-Emulator in the system design raised the results effectiveness. The program used in the present work is optisystem-15, and the results obtained in this study coincide with the theoretical and actual results obtained by the previous studies.


2021 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Murad Hassan ◽  
Arslan Arif

Dispersion is one of the main factors that limit the development of optical fiber communication systems regarding data rate and long distance transmission of the signal. This is because of increases in dispersion with the increase in data rate and distance, resulting in signal degradation. In this work, we propose an optimal dispersion compensated optical fiber system, which is designed on the basis of Q-factor, eye height, and bit error rate. The system operates at a bit rate of 40 Gbps and a distance of 100 km. According to the optimization scheme, the system is simulated using the modulation format Non Return to Zero (NRZ) with uniform and Linear Chirped Apodized Fiber Bragg Grating (LCAFBG) as dispersion compensator. After deciding the Fiber Bragg Grating (FBG) structure, other key parameters are simulated to meet the requirements. The simulation results show that using NRZ modulation format with a LCAFBG Tanh profile gives better performance.


Author(s):  
Tipat Piyapatarakul ◽  
Hanzhi Tang ◽  
Kasidit Toprasertpong ◽  
Shinichi TAKAGI ◽  
Mitsuru TAKENAKA

Abstract We propose an optical phase modulator with a hybrid metal-oxide-semiconductor (MOS) capacitor, consisting of single-layer graphene and III-V semiconductor waveguide. The proposed modulator is numerically analyzed in conjunction with the surface conductivity model of graphene. Since the absorption of graphene at a 2 µm wavelength can be suppressed by modulating the chemical potential of graphene with the practical gate bias, the phase modulation efficiency is predicted to be 0.051 V·cm with a total insertion loss of 0.85 dB when an n-InGaAs waveguide is used, showing the feasibility of the low-loss, high-efficiency graphene/III-V hybrid MOS optical phase modulator, which is useful in the future 2-µm optical fiber communication band.


APL Photonics ◽  
2021 ◽  
Author(s):  
Josh W. Nevin ◽  
Sam Nallaperuma ◽  
Nikita A. Shevchenko ◽  
Xiang Li ◽  
Md. Saifuddin Faruk ◽  
...  

2021 ◽  
Author(s):  
Haihao Fu ◽  
Ying Shi ◽  
Zao Yi ◽  
Chao Liu ◽  
Xinping Song ◽  
...  

Abstract In the development of orbital angular momentum (OAM) mode division multiplexing (MDM), the capacity of optical fiber communication must be improved. However, owing to dispersion and confinement loss, many OAM modes do not propagate stably over a long distance in optical fibers. In this work, the effects of the size, number, shape, number of layers, and layer spacing of air holes in the cladding of the fiber on the dispersion and confinement loss are analyzed based on a simple structure. The trends are studied and summarized to facilitate the design of optical fibers to achieve stable transmission of OAM modes over a long distance.


2021 ◽  
Vol 2143 (1) ◽  
pp. 012022
Author(s):  
Demei Gao

Abstract Optical fiber communication engineering as a kind of “wired” optical communication mode which uses light wave as carrier and optical fiber as transmission medium to transmit information from one place to another, especially optical fiber has a special position in the communication industry due to its unique advantages of wide transmission frequency band, high anti-interference and small signal attenuation. It has important practical value for the deep research of the area setting and protection of optical fiber and cable in the optical fiber communication engineering. However, at present, there is no complete management system in the aspects of hardware processing, fiber optic cable protection and the guarantee of the introduction of related talents, so it is urgent to innovate and develop the existing path. Based on this, this paper first analyzes the problems of optical fiber guarantee in the intelligent technology system construction of optical fiber technology in the field of communication engineering, and then puts forward the construction strategy of intelligent protection and breakthrough technology in optical fiber communication technology system.


Author(s):  
Mehak Bilal

Abstract: This study shows an easy and effective design of an optical fiber communication system, which demonstrates EDFA's ideal position in the whole system. In recent years, erbium-doped fiber amplifiers (EDFAs) have been more attentive with the development of high-speed and long-distance data transmission systems. In our research, EDFA's forward pump capacity is maintained at 100mW, and our three configurations modify and analyze the location of EDFA. First configuration is meant to place EDFA before optical fiber in the entire system. The second arrangement has been intended such that EDFA will precede optical fiber. EDFA is inserted in the third configuration between the optical fiber length. For the three setups, the BER, Q factor and output power level were observed, with the setup one having minimal BER, setup two with the greatest power, and setup three with the maximum Q factor. This paper discusses the causes behind these results and designers may construct an optical fiber communication system in the most efficient and reliable fashion by taking those results into consideration. The simulation was performed in Opti-System software. Keywords: EDFA, BER, Q factor, Analyzer, Optical fibre


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 539
Author(s):  
Narottam Das ◽  
Mohammad Nur-E-Alam ◽  
Alif Islam ◽  
Ain Zulaikha Maslihan Ain

The primary focus of this review article mainly emphasizes the light absorption enhancement for various nanostructured gratings assisted metal-semiconductor-metal photodetectors (MSM-PDs) that are so far proposed and developed for the improvement of light capturing performance. The MSM-PDs are considered as one of the key elements in the optical and high-speed communication systems for applications such as faster optical fiber communication systems, sensor networks, high-speed chip-to-chip interconnects, and high-speed sampling. The light absorption enhancement makes the MSM-PDs an ideal candidate due to their excellent performances in detection, especially in satisfying the high-speed or high-performance device requirements. The nano-grating assisted MSM-PDs are preordained to be decorous for many emerging and existing communication device applications. There have been a significant number of research works conducted on the implementation of nano-gratings, and still, more researches are ongoing to raise the performance of MSM-PDs particularly, in terms of enhancing the light absorption potentialities. This review article aims to provide the latest update on the exertion of nano-grating structures suitable for further developments in the light absorption enhancement of the MSM-PDs.


Sign in / Sign up

Export Citation Format

Share Document