scholarly journals Theoretical Shaping of Femtosecond Laser Pulses for Molecular Photodissociation with Control Techniques Based on Ehrenfest′s Dynamics and Time-Dependent Density Functional Theory

ChemPhysChem ◽  
2016 ◽  
Vol 17 (11) ◽  
pp. 1601-1607 ◽  
Author(s):  
Alberto Castro
2010 ◽  
Vol 88 (11) ◽  
pp. 1186-1194
Author(s):  
Emmanuel Penka Fowe ◽  
André Dieter Bandrauk

Time-dependent density functional theory (TDDFT) studies of the ionization of CO2 by intense laser pulses Io ≥ 1 × 1014 W/cm2, at 800 nm are presented using the LB94 and the LDA potentials. Results reveal that for lower laser peak intensity, Io = 3.5 × 1014 W/cm2, the highest occupied molecular orbital (HOMO) contributes significantly to ionization owing to its lower ionization potential (IP), whereas the inner orbitals play the important role for higher laser peak intensities. Even though such lower orbitals have higher IP, the ionization process occurs when orbital densities are maximum along the direction of the laser field polarization. These findings are confirmed through the analysis of the images from the time-dependent electron localization function (TDELF) and the spectra of higher order harmonic generation (HOHG). Additionally, in spite of the IP difference between Kohn–Sham orbitals from LDA and LB94 potentials, our results show almost the same trend for both.


2009 ◽  
Vol 87 (7) ◽  
pp. 1081-1089
Author(s):  
Emmanuel Penka Fowe ◽  
André Dieter Bandrauk

Time-dependent density functional theory (TDDFT) studies of the ionization of CO2 by intense laser pulses (3.50 × 1014, 1.40 × 1015, 2.99 × 1015, and 1.25 × 1016 W/cm2) at 800 nm (ω = 0.0584 au) are presented in the nonlinear nonpertubative regime. Special emphasis is placed on elucidating molecular orbital orientation and various peak-intensities effects on the ionization processes. The results reveal that molecular orbital ionizations are strongly sensitive to their symmetry and the laser intensities. Most notably, we found that with a proper choice of the laser intensity (3.5 × 1014 W/cm2), the sensitivity is strong enough such that the nature and symmetry of the highest occupied molecular orbital (HOMO) can be directly probed and visualized from the angular dependence of laser-induced ionization. At higher intensities, ionization is found to occur also from inner orbitals, thus complicating the imaging of simple orbitals. A time-dependent electron-localization function (TDELF) is used to get a visual insight on the time evolution process of the electron density.


Sign in / Sign up

Export Citation Format

Share Document