Altered Protein Synthesis

Author(s):  
Herschel Sidransky
1990 ◽  
Vol 80 (4) ◽  
pp. 619-623 ◽  
Author(s):  
Louise Lalonde ◽  
Rajinder S. Dhindsa

1994 ◽  
Vol 8 (3) ◽  
pp. 253-258 ◽  
Author(s):  
Yasunobu Aoki ◽  
Michael M. Lipsky ◽  
Bruce A. Fowler

2020 ◽  
Author(s):  
David M. Garcia ◽  
Edgar A. Campbell ◽  
Christopher M. Jakobson ◽  
Mitsuhiro Tsuchiya ◽  
Acadia DiNardo ◽  
...  

ABSTRACTOrganisms often commit to one of two strategies: living fast and dying young or living slow and dying old. In fluctuating environments, however, switching between these two strategies could be advantageous. Lifespan is often inversely correlated with cell size and proliferation, which are both limited by protein synthesis. Here we report that a highly conserved RNA-modifying enzyme, the pseudouridine synthase Pus4/TruB, can act as a prion, endowing yeast with greater proliferation rates at the cost of a shortened lifespan. Cells harboring the prion can grow larger and exhibit altered protein synthesis. This epigenetic state, [BIG+] (better in growth), allows cells to heritably yet reversibly alter their translational program, leading to the differential expression of hundreds of proteins, including many that regulate proliferation and aging. Our data reveal a functional role for aggregation of RNA-modifying enzymes in driving heritable epigenetic states that transform cell growth and survival.


DICP ◽  
1989 ◽  
Vol 23 (5) ◽  
pp. 411-416 ◽  
Author(s):  
Kathleen M. Teasley ◽  
Renee L. Buss

The critically ill, stressed patient has been characterized as having altered cellular metabolism. Altered protein metabolism is manifested as negative nitrogen balance, reduced whole-body protein synthesis, and increased proteolysis. An increased oxidation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine has also been observed. Exogenous administration of BCAA as part of a total parenteral nutrition (TPN) regimen has been proposed to compensate for the altered protein metabolism in the stressed patient by sparing endogenous sources of BCAA, thereby reducing skeletal muscle catabolism and increasing protein synthesis. Numerous clinical studies have been performed investigating this theory. The results are controversial. Differences in study outcomes appear to be related to study design, especially patient selection. Our review of those studies which were randomized, prospective, and controlled indicates that an improvement in nitrogen retention and visceral protein status can be achieved in stress-stratified patients who receive a TPN regimen containing a BCAA-enriched formula. The significance of these outcomes on morbidity, length of hospital stay, and mortality has not been evaluated.


Sign in / Sign up

Export Citation Format

Share Document