Do Parenteral Nutrition Solutions with High Concentrations of Branched-Chain Amino Acids Offer Significant Benefits to Stressed Patients?

DICP ◽  
1989 ◽  
Vol 23 (5) ◽  
pp. 411-416 ◽  
Author(s):  
Kathleen M. Teasley ◽  
Renee L. Buss

The critically ill, stressed patient has been characterized as having altered cellular metabolism. Altered protein metabolism is manifested as negative nitrogen balance, reduced whole-body protein synthesis, and increased proteolysis. An increased oxidation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine has also been observed. Exogenous administration of BCAA as part of a total parenteral nutrition (TPN) regimen has been proposed to compensate for the altered protein metabolism in the stressed patient by sparing endogenous sources of BCAA, thereby reducing skeletal muscle catabolism and increasing protein synthesis. Numerous clinical studies have been performed investigating this theory. The results are controversial. Differences in study outcomes appear to be related to study design, especially patient selection. Our review of those studies which were randomized, prospective, and controlled indicates that an improvement in nitrogen retention and visceral protein status can be achieved in stress-stratified patients who receive a TPN regimen containing a BCAA-enriched formula. The significance of these outcomes on morbidity, length of hospital stay, and mortality has not been evaluated.

1986 ◽  
Vol 250 (6) ◽  
pp. E695-E701 ◽  
Author(s):  
S. Nissen ◽  
M. W. Haymond

Whole-body leucine and alpha-ketoisocaproate (KIC) metabolism were estimated in mature dogs fed a complete meal, a meal devoid of branched-chain amino acids, and a meal devoid of all amino acids. Using a constant infusion of [4,5-3H]leucine and alpha-[1-14C]ketoisocaproate (KIC), combined with dietary [5,5,5-2H3]leucine, the rate of whole-body proteolysis, protein synthesis, leucine oxidation, and interconversion of leucine and KIC were estimated along with the rate of leucine absorption. Ingestion of the complete meal resulted in a decrease in the rate of endogenous proteolysis, a small increase in the estimated rate of leucine entering protein, and a twofold increase in the rate of leucine oxidation. Ingestion of either the meal devoid of branched-chain amino acids or devoid of all amino acids resulted in a decrease in estimates of whole-body rates of proteolysis and protein synthesis, decreased leucine oxidation, and a decrease in the interconversion of leucine and KIC. The decrease in whole-body proteolysis was closely associated with the rise in plasma insulin concentrations following meal ingestion. Together these data suggest that the transition from tissue catabolism to anabolism is the result, at least in part, of decreased whole-body proteolysis. This meal-related decrease in proteolysis is independent of the dietary amino acid composition or content. In contrast, the rate of protein synthesis was sustained only when the meal complete in all amino acids was provided, indicating an overriding control of protein synthesis by amino acid availability.


1990 ◽  
Vol 78 (6) ◽  
pp. 621-628 ◽  
Author(s):  
F. Carli ◽  
J. Webster ◽  
V. Ramachandra ◽  
M. Pearson ◽  
M. Read ◽  
...  

1. The present study was designed in an attempt to resolve conflicting views currently in the literature relating to the effect of surgery on various aspects of protein metabolism. 2. Sequential post-operative (2, 4 and 6 days) changes in whole-body protein turnover, forearm arteriovenous difference of plasma amino acids, glucose, lactate and free fatty acids, muscle concentration of free amino acids, RNA and protein, urinary nitrogen and 3-methylhistidine, plasma concentrations of insulin, cortisol and growth hormone, and resting metabolic rate, were measured in six patients undergoing uncomplicated elective total abdominal hysterectomy. 3. All patients received a constant daily diet, either orally or intravenously, based on 0.1 g of nitrogen/kg and an energy content of 1.1 times the resting metabolic rate for 7 days before and 6 days after surgery. 4. Whole-body protein turnover, synthesis and breakdown increased significantly 2 days after surgery (P <0.05) and returned towards pre-operative levels thereafter. 5. Forearm release of branched-chain amino acids and alanine, and efflux of glucose and lactate, were enhanced 4 days after surgery (P <0.05). Muscle glutamine and alanine concentrations were decreased on the fourth and sixth days after surgery (P <0.05). The RNA/protein ratio (indicating the capacity for protein synthesis) was unaltered. 6. A significant increase in urinary nitrogen and 3-methylhistidine was observed on days 3 and 4 after surgery (P <0.05). Thereafter, these parameters remained elevated, although failing to reach statistical significance. 7. The resting metabolic rate was significantly increased (P <0.05) 2 days after surgery but the respiratory quotient (0.77) was unchanged. 8. These data support the contention that whole-body protein synthesis and breakdown increase after surgery. Differences observed pre- and post-operatively between leucine kinetic estimates and other methods of quantifying protein metabolism indicate that only like methodologies should be compared.


2000 ◽  
Vol 279 (5) ◽  
pp. E978-E988 ◽  
Author(s):  
Paul G. Whittaker ◽  
Choy H. Lee ◽  
Roy Taylor

The effects of pregnancy and type 1 diabetes [insulin-dependent diabetes mellitus (IDDM)] on protein metabolism are still uncertain. Therefore, six normal and five IDDM women were studied during and after pregnancy, using [13C]leucine and [2H5]phenylalanine with a hyperinsulinemic-euglycemic clamp and amino acid infusion. Fasting total plasma amino acids were lower in pregnancy in normal but not IDDM women (2,631 ± 427 vs. 2,057 ± 471 and 2,523 ± 430 vs. 2,500 ± 440 μmol/l, respectively). Whole body protein breakdown (leucine) increased in pregnancy [change in normal (ΔN) and IDDM women (ΔD) 0.59 ± 0.40 and 0.48 ± 0.26 g · kg−1 · day−1, both P < 0.001], whereas reductions in protein breakdown due to insulin/amino acids (ΔN −0.57 ± 0.19, ΔD −0.58 ± 0.20 g · kg−1 · day−1, both P < 0.001) were unaffected by pregnancy. Protein breakdown in IDDM women was not higher than normal, and neither pregnancy nor type 1 diabetes altered the insulin sensitivity of amino acid turnover. Nonoxidized leucine disposal (protein synthesis) increased in pregnancy (ΔN 0.67 ± 0.45, ΔD 0.64 ± 0.34 g · kg−1 · day−1, both P < 0.001). Pregnancy reduced the response of phenylalanine hydroxylation to insulin/amino acids in both groups (ΔN −1.14 ± 0.74, ΔD −1.12 ± 0.77 g · kg−1 · day−1, both P < 0.05). These alterations may enable amino acid conservation for protein synthesis and accretion in late pregnancy. Well-controlled type 1 diabetes caused no abnormalities in the regulation of basal or stimulated protein metabolism.


2016 ◽  
Vol 311 (4) ◽  
pp. E671-E677 ◽  
Author(s):  
Sarah Everman ◽  
Christian Meyer ◽  
Lee Tran ◽  
Nyssa Hoffman ◽  
Chad C. Carroll ◽  
...  

Insulin stimulates muscle protein synthesis when the levels of total amino acids, or at least the essential amino acids, are at or above their postabsorptive concentrations. Among the essential amino acids, branched-chain amino acids (BCAA) have the primary role in stimulating muscle protein synthesis and are commonly sought alone to stimulate muscle protein synthesis in humans. Fourteen healthy young subjects were studied before and after insulin infusion to examine whether insulin stimulates muscle protein synthesis in relation to the availability of BCAA alone. One half of the subjects were studied in the presence of postabsorptive BCAA concentrations (control) and the other half in the presence of increased plasma BCAA (BCAA). Compared with that prior to the initiation of the insulin infusion, fractional synthesis rate of muscle protein (%/h) did not change ( P > 0.05) during insulin in either the control (0.04 ± 0.01 vs 0.05 ± 0.01) or the BCAA (0.05 ± 0.02 vs. 0.05 ± 0.01) experiments. Insulin decreased ( P < 0.01) whole body phenylalanine rate of appearance (μmol·kg−1·min−1), indicating suppression of muscle proteolysis, in both the control (1.02 ± 0.04 vs 0.76 ± 0.04) and the BCAA (0.89 ± 0.07 vs 0.61 ± 0.03) experiments, but the change was not different between the two experiments ( P > 0.05). In conclusion, insulin does not stimulate muscle protein synthesis in the presence of increased circulating levels of plasma BCAA alone. Insulin's suppressive effect on proteolysis is observed independently of the levels of circulating plasma BCAA.


2019 ◽  
Vol 20 (7) ◽  
pp. 644-651 ◽  
Author(s):  
Changsong Gu ◽  
Xiangbing Mao ◽  
Daiwen Chen ◽  
Bing Yu ◽  
Qing Yang

Branched chain amino acids are the essential nutrients for humans and many animals. As functional amino acids, they play important roles in physiological functions, including immune functions. Isoleucine, as one of the branched chain amino acids, is also critical in physiological functions of the whole body, such as growth, immunity, protein metabolism, fatty acid metabolism and glucose transportation. Isoleucine can improve the immune system, including immune organs, cells and reactive substances. Recent studies have also shown that isoleucine may induce the expression of host defense peptides (i.e., &#946;-defensins) that can regulate host innate and adaptive immunity. In addition, isoleucine administration can restore the effect of some pathogens on the health of humans and animals via increasing the expression of &#946;-defensins. Therefore, the present review will emphatically discuss the effect of isoleucine on immunity while summarizing the relationship between branched chain amino acids and immune functions.


Author(s):  
Jorn Trommelen ◽  
Andrew M. Holwerda ◽  
Philippe J. M. Pinckaers ◽  
Luc J. C. van Loon

All human tissues are in a constant state of remodelling, regulated by the balance between tissue protein synthesis and breakdown rates. It has been well-established that protein ingestion stimulates skeletal muscle and whole-body protein synthesis. Stable isotope-labelled amino acid methodologies are commonly applied to assess the various aspects of protein metabolism in vivo in human subjects. However, to achieve a more comprehensive assessment of post-prandial protein handling in vivo in human subjects, intravenous stable isotope-labelled amino acid infusions can be combined with the ingestion of intrinsically labelled protein and the collection of blood and muscle tissue samples. The combined application of ingesting intrinsically labelled protein with continuous intravenous stable isotope-labelled amino acid infusion allows the simultaneous assessment of protein digestion and amino acid absorption kinetics (e.g. release of dietary protein-derived amino acids into the circulation), whole-body protein metabolism (whole-body protein synthesis, breakdown and oxidation rates and net protein balance) and skeletal muscle metabolism (muscle protein fractional synthesis rates and dietary protein-derived amino acid incorporation into muscle protein). The purpose of this review is to provide an overview of the various aspects of post-prandial protein handling and metabolism with a focus on insights obtained from studies that have applied intrinsically labelled protein under a variety of conditions in different populations.


1997 ◽  
Vol 77 (2) ◽  
pp. 197-212 ◽  
Author(s):  
Jens Kondrup ◽  
Klaus Nielsen ◽  
Anders Juul

Patients with cirrhosis of the liver require an increased amount of protein to achieve N balance. However, the utilization of protein with increased protein intake, i.e. the slope from regression analysis of N balance v. intake, is highly efficient (Nielsen et al. 1995). In the present study, protein requirement and protein utilization were investigated further by measuring protein synthesis and degradation. In two separate studies, five or six patients with cirrhosis of the liver were refed on a balanced diet for an average of 2 or 4 weeks. Protein and energy intakes were doubled in both studies. Initial and final whole-body protein metabolism was measured in the fed state by primed continous [15N]glycine infusion. Refeeding caused a statistically significant increase of about 30% in protein synthesis in both studies while protein degradation was only slightly affected. The increase in protein synthesis was associated with significant increases in plasma concentrations of total amino acids (25%), leucine (58%), isoleucine (82%), valine (72%), proline (48%) and triiodothyronine (27%) while insulin, growth hormone, insulin-like growth factor (IGF)-I and IGF-binding protein-3 were not changed significantly. The results indicate that the efficient protein utilization is due to increased protein synthesis, rather than decreased protein degradation, and suggest that increases in plasma amino acids may be responsible for the increased protein synthesis. A comparison of the patients who had a normal protein requirement with the patients who had an increased protein requirement suggests that the increased protein requirement is due to a primary increase in protein degradation. It is speculated that this is due to low levels of IGF-I secondary to impaired liver function, since initial plasma concentration of IGF-I was about 25% of control values and remained low during refeeding.


Sign in / Sign up

Export Citation Format

Share Document