Multiobjective optimization based on self‐organizing Particle Swarm Optimization algorithm for massive MIMO 5G wireless network

Author(s):  
Kesavalu Elumalai Purushothaman ◽  
Velmurugan Nagarajan
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Huan Zhang ◽  
Rennong Yang ◽  
Changyue Sun ◽  
Haiyan Han

For the problem of multiaircraft cooperative suppression interference array (MACSIA) against the enemy air defense radar network in electronic warfare mission planning, firstly, the concept of route planning security zone is proposed and the solution to get the minimum width of security zone based on mathematical morphology is put forward. Secondly, the minimum width of security zone and the sum of the distance between each jamming aircraft and the center of radar network are regarded as objective function, and the multiobjective optimization model of MACSIA is built, and then an improved multiobjective particle swarm optimization algorithm is used to solve the model. The decomposition mechanism is adopted and the proportional distribution is used to maintain diversity of the new found nondominated solutions. Finally, the Pareto optimal solutions are analyzed by simulation, and the optimal MACSIA schemes of each jamming aircraft suppression against the enemy air defense radar network are obtained and verify that the built multiobjective optimization model is corrected. It also shows that the improved multiobjective particle swarm optimization algorithm for solving the problem of MACSIA is feasible and effective.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Huan Zhang ◽  
Rennong Yang ◽  
Changyue Sun

Dynamic multiaircraft cooperative suppression interference array (MACSIA) optimization problem is a typical dynamic multiobjective optimization problem. In this paper, the sum of the distance between each jamming aircraft and the enemy air defense radar network center and the minimum width of the safety area for route planning are taken as the objective functions. The dynamic changes in the battlefield environment are reduced to two cases. One is that the location of the enemy air defense radar is mobile, but the number remains the same. The other is that the number of the enemy air defense radars is variable, but the original location remains unchanged. Thus, two dynamic multiobjective optimization models of dynamic MACSIA are constructed. The dynamic multiobjective particle swarm optimization algorithm is used to solve the two models, respectively. The optimal dynamic MACSIA schemes which satisfy the limitation of the given suppression interference effect and ensure the safety of the jamming aircraft themselves are obtained by simulation experiments. And then verify the correctness of the constructed dynamic multiobjective optimization model, as well as the feasibility and effectiveness of the dynamic multiobjective particle swarm optimization algorithm in solving dynamic MACSIA problem.


2021 ◽  
Vol 11 (19) ◽  
pp. 9254
Author(s):  
Lingren Kong ◽  
Jianzhong Wang ◽  
Peng Zhao

Dynamic weapon target assignment (DWTA) is an effective method to solve the multi-stage battlefield fire optimization problem, which can reflect the actual combat scenario better than static weapon target assignment (SWTA). In this paper, a meaningful and effective DWTA model is established, which contains two practical and conflicting objectives, namely, maximizing combat benefits and minimizing weapon costs. Moreover, the model contains limited resource constraints, feasibility constraints and fire transfer constraints. The existence of multi-objective and multi-constraint makes DWTA more complicated. To solve this problem, an improved multiobjective particle swarm optimization algorithm (IMOPSO) is proposed in this paper. Various learning strategies are adopted for the dominated and non-dominated solutions of the algorithm, so that the algorithm can learn and evolve in a targeted manner. In order to solve the problem that the algorithm is easy to fall into local optimum, this paper proposes a search strategy based on simulated binary crossover (SBX) and polynomial mutation (PM), which enables elitist information to be shared among external archive and enhances the exploratory capabilities of IMOPSO. In addition, a dynamic archive maintenance strategy is applied to improve the diversity of non-dominated solutions. Finally, this algorithm is compared with three state-of-the-art multiobjective optimization algorithms, including solving benchmark functions and DWTA model in this article. Experimental results show that IMOPSO has better convergence and distribution than the other three multiobjective optimization algorithms. IMOPSO has obvious advantages in solving multiobjective DWTA problems.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Yongxiang Li ◽  
Xifan Yao ◽  
Min Liu

Aiming at the problems of low search efficiency and inaccurate optimization of existing service composition optimization methods, a new multiobjective optimization model of cloud manufacturing service composition was constructed, which took service matching degree, composition synergy degree, cloud entropy, execution time, and execution cost as optimization objectives, and an improved particle swarm optimization algorithm (IPSOA) was proposed. In the IPSOA, the integer encoding method was used for particle encoding. The inertia coefficient and two acceleration coefficients were improved by introducing the normal cloud model, sine function, and cosine function. The global search ability of IPSOA in the early stage was improved, and its prematurity was restrained to form a more comprehensive solution space. In the later stage, IPSOA focused on the local fine search and improved the optimization precision. Taking automatic guided forklift manufacturing task as an example, the correctness of the proposed multiobjective optimization model of cloud manufacturing service composition and the effectiveness of its solution algorithm were verified. The performance of IPSOA was analyzed and compared with standard genetic algorithm (SGA) and traditional particle swarm optimization (PSO). Under the same conditions, IPSOA had a faster convergence speed than PSO and SGA and had better performance than PSO.


Sign in / Sign up

Export Citation Format

Share Document