Thrombolytic activity of YM866, a novel modified tissue-type plasminogen activator, in a rabbit model of jugular vein thrombosis

1994 ◽  
Vol 33 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Tomihisa Kawasaki ◽  
Seiji Kaku ◽  
Yumiko Sakai ◽  
Toichi Takenaka
1984 ◽  
Vol 52 (01) ◽  
pp. 027-030 ◽  
Author(s):  
D Collen ◽  
J M Stassen ◽  
M Blaber ◽  
M Winkler ◽  
M Verstraete

SummaryThe thrombolytic properties of recombinant pro-urokinase (Rec-pro-UK), recombinant active urokinase (Rec-UK) and natural urinary urokinase (Nat-UK) were compared with those of tissue-type plasminogen activator (t-PA) in rabbits with a radiolabeled thrombus in the jugular vein. The thrombolytic agents were infused intravenously over a time period of 4 hr and the extent of thrombolysis measured two hours later.In control animals the extent of thrombolysis was 11 ± 2% (n=8) after 6 hr. Nat-UK and Rec-UK had very similar thrombolytic properties. Significant thrombolysis was only obtained with infusion of 240,000 IU per kg (41 ± 2%, n=4 for Nat-UK and 37 ± 4%, n=4 for Rec-UK) and this was associated with a marked systemic activation of the fibrinolytic system, as evidenced by consumption of plasminogen and α2-antiplasmin and fibrinogen breakdown.Infusion of Rec-pro-UK induced thrombolysis at a dose of 60,000 IU per kg (44 ± 8%, n=3) but without associated systemic activation of the fibrinolytic system. In this respect the properties of Rec-pro-UK were similar to those of t-PA, which, however, had a 2- to 4-fold higher specific thrombolytic activity (30,000 IU/ kg yielding 48 ± 1% lysis, n=4).It is concluded that Rec-UK has very similar thrombolytic properties as Nat-UK and that Rec-pro-UK has a beter thrombus- selectivity and less systemic side effects than the active enzymes.


1995 ◽  
Vol 73 (03) ◽  
pp. 488-494 ◽  
Author(s):  
J L M Heeremans ◽  
R Prevost ◽  
M E A Bekkers ◽  
P Los ◽  
J J Emeis ◽  
...  

SummaryIn this study, we aimed at improving the therapeutic index of tissue- type Plasminogen Activator (t-PA) as thrombolytic agent in the treatment of myocardial infarction. Liposome-encapsulated t-PA was tested in a rabbit jugular vein thrombosis model: administration of free t-PA (t-PA) as a bolus injection in the ear vein was compared to a similar administration of liposomal t-PA (t-PA-lip), liposomal t-PA in plasminogen-coated liposomes (Plg-t-PA-lip), a mixture of free t-PA and empty liposomes (t-PA+empty lip) and a saline-blank (blank) in terms of thrombolytic activity and side effects.Liposomal t-PA (t-PA-lip/Plg-t-PA-lip) showed a significantly better thrombolysis efficiency than equimolar doses of free t-PA (t-PA/ t-PA+ empty lip): about 0.24 mg/kg of liposomal t-PA practically equalled the lysis-activity of a dose of free t-PA of 1.0 mg/kg (t-PAlmg/kg). On the other hand, liposome encapsulation did not affect the systemic activation of alpha2-antiplasmin and plasminogen by t-PA.We conclude that for this model an improvement in thrombolytic efficacy of t-PA is achieved by liposome encapsulation of t-PA. As t-PA-lip and Plg-t-PA-lip -treatment induced similar results, targeting of liposomal t-PA by coupled glu-Plg remains a topic to be optimized in future studies.


Blood ◽  
1989 ◽  
Vol 73 (5) ◽  
pp. 1207-1212
Author(s):  
DJ Spriggs ◽  
JM Stassen ◽  
Y Hashimoto ◽  
D Collen

Thrombolysis with single and combined four-hour intravenous (IV) infusions of recombinant tissue-type plasminogen activator (rt-PA), recombinant single-chain urokinase-type plasminogen activator of 54,000 molecular weight (mol wt) (rscu-PA), and rscu-PA-32 kD, an rscu-PA derivative of 32,000 mol wt was studied in a femoral vein thrombosis model in the dog and in a jugular vein thrombosis model in the rabbit. In both species, the dose-response curves were linear, and no systemic activation of the fibrinolytic system or fibrinogen breakdown was observed. The steady-state levels of rt-PA-, rscu-PA-, and rscu-PA-32 kD-related antigens in plasma were proportional to the infusion rates. In the dog model, 25% lysis was obtained with 0.11 mg/kg rt-PA, 0.8 mg/kg rscu-PA, and 0.37 mg/kg rscu-PA-32 kD. Combinations of rt-PA and rscu-PA were 2.6 times more active (P less than .005) than anticipated on the basis of their pharmacologic additive effects, whereas combinations of rt-PA and rscu-PA-32 kD were 2.7 times more active (P less than .05). In the rabbit model, 25% lysis was obtained with 0.24 mg/kg rt-PA, 0.75 mg/kg rscu-PA, and 1.25 mg/kg rscu-PA-32 kD. Combinations of rt-PA and rscu-PA have a fivefold synergistic interaction, but surprisingly no synergism was observed between rt-PA and rscu-PA-32 kD. This study shows that synergism between rt-PA and rscu-PA occurs both in rabbits and dogs in a relatively narrow concentration range that allows a fractional reduction of the total equipotent dose by a factor of 2.5-fold to fivefold. Combination therapy is not associated with systemic fibrinolytic activation. This range of synergistic interaction, although limited, may be useful in devising the best thrombolytic therapy for patients with thromboembolic disease.


Blood ◽  
1988 ◽  
Vol 71 (1) ◽  
pp. 216-219
Author(s):  
D Collen ◽  
JM Stassen ◽  
G Larsen

The following mutants of human tissue-type plasminogen activator (t-PA) were constructed by deletion mutagenesis of t-PA cDNA, expressed in Chinese hamster ovary cells and purified to homogeneity: (a) t-PA-delta FE:t-PA lacking both the fibronectin fingerlike (F) domain and the epidermal growth factor (E) domain, (b) t-PA-delta FE1X:t-PA-delta FE with the glycosylated 117Asn mutagenized to Gln, and (c) t-PA-delta FE3X:t-PA-delta FE with the three known glycosylated Asn residues replaced by Gln. The mutant and natural t-PA (Mel-t-PA obtained from melanoma cell culture) were infused intravenously for four hours into rabbits with jugular vein thrombosis at doses ranging between 0.12 and 0.75 mg/kg. Fifty percent thrombolysis, determined by interpolation, was obtained with 0.4 mg/kg Mel-t-PA, 0.37 mg/kg t-PA-delta FE, 0.2 mg/kg t-PA-delta FE1X, and 0.40 mg/kg t-PA-delta FE3X. These infusion rates resulted in plateau levels of t-PA antigen in plasma of 0.055, 2.1, 0.6, and 0.5 micrograms/mL, respectively. At 50% lysis, the residual fibrinogen 30 minutes after the end of the infusion was 100%, 81%, 100% and 85% of baseline, and the residual alpha 2-antiplasmin was 82%, 55%, 85%, and 90%, respectively. These results indicate that t-PA- delta FE1X and t-PA-delta FE3X have a specific thrombolytic activity and fibrin specificity comparable to that of Mel-t-PA. t-PA-delta FE has a comparable specific thrombolytic activity but a lower fibrin specificity than Mel-t-PA. After the end of the infusion, t-PA-related antigen disappeared from plasma with an initial t1/2 of four minutes for Mel-t-PA, 25 minutes for t-PA-delta FE, 42 minutes for t-PA-delta FE1X, and 14 minutes for t-PA-delta FE3X. It is concluded that t-PA can be modified by deletion mutagenesis to yield variants with a markedly longer half-life in the blood. Some of these variants have a specific thrombolytic activity and fibrin specificity similar to that of natural t-PA. These variants may be useful to identify the structures in t-PA responsible for its clearance, specific thrombolytic activity, and fibrin specificity in vivo.


Blood ◽  
1989 ◽  
Vol 73 (5) ◽  
pp. 1207-1212 ◽  
Author(s):  
DJ Spriggs ◽  
JM Stassen ◽  
Y Hashimoto ◽  
D Collen

Abstract Thrombolysis with single and combined four-hour intravenous (IV) infusions of recombinant tissue-type plasminogen activator (rt-PA), recombinant single-chain urokinase-type plasminogen activator of 54,000 molecular weight (mol wt) (rscu-PA), and rscu-PA-32 kD, an rscu-PA derivative of 32,000 mol wt was studied in a femoral vein thrombosis model in the dog and in a jugular vein thrombosis model in the rabbit. In both species, the dose-response curves were linear, and no systemic activation of the fibrinolytic system or fibrinogen breakdown was observed. The steady-state levels of rt-PA-, rscu-PA-, and rscu-PA-32 kD-related antigens in plasma were proportional to the infusion rates. In the dog model, 25% lysis was obtained with 0.11 mg/kg rt-PA, 0.8 mg/kg rscu-PA, and 0.37 mg/kg rscu-PA-32 kD. Combinations of rt-PA and rscu-PA were 2.6 times more active (P less than .005) than anticipated on the basis of their pharmacologic additive effects, whereas combinations of rt-PA and rscu-PA-32 kD were 2.7 times more active (P less than .05). In the rabbit model, 25% lysis was obtained with 0.24 mg/kg rt-PA, 0.75 mg/kg rscu-PA, and 1.25 mg/kg rscu-PA-32 kD. Combinations of rt-PA and rscu-PA have a fivefold synergistic interaction, but surprisingly no synergism was observed between rt-PA and rscu-PA-32 kD. This study shows that synergism between rt-PA and rscu-PA occurs both in rabbits and dogs in a relatively narrow concentration range that allows a fractional reduction of the total equipotent dose by a factor of 2.5-fold to fivefold. Combination therapy is not associated with systemic fibrinolytic activation. This range of synergistic interaction, although limited, may be useful in devising the best thrombolytic therapy for patients with thromboembolic disease.


Blood ◽  
1988 ◽  
Vol 71 (1) ◽  
pp. 216-219 ◽  
Author(s):  
D Collen ◽  
JM Stassen ◽  
G Larsen

Abstract The following mutants of human tissue-type plasminogen activator (t-PA) were constructed by deletion mutagenesis of t-PA cDNA, expressed in Chinese hamster ovary cells and purified to homogeneity: (a) t-PA-delta FE:t-PA lacking both the fibronectin fingerlike (F) domain and the epidermal growth factor (E) domain, (b) t-PA-delta FE1X:t-PA-delta FE with the glycosylated 117Asn mutagenized to Gln, and (c) t-PA-delta FE3X:t-PA-delta FE with the three known glycosylated Asn residues replaced by Gln. The mutant and natural t-PA (Mel-t-PA obtained from melanoma cell culture) were infused intravenously for four hours into rabbits with jugular vein thrombosis at doses ranging between 0.12 and 0.75 mg/kg. Fifty percent thrombolysis, determined by interpolation, was obtained with 0.4 mg/kg Mel-t-PA, 0.37 mg/kg t-PA-delta FE, 0.2 mg/kg t-PA-delta FE1X, and 0.40 mg/kg t-PA-delta FE3X. These infusion rates resulted in plateau levels of t-PA antigen in plasma of 0.055, 2.1, 0.6, and 0.5 micrograms/mL, respectively. At 50% lysis, the residual fibrinogen 30 minutes after the end of the infusion was 100%, 81%, 100% and 85% of baseline, and the residual alpha 2-antiplasmin was 82%, 55%, 85%, and 90%, respectively. These results indicate that t-PA- delta FE1X and t-PA-delta FE3X have a specific thrombolytic activity and fibrin specificity comparable to that of Mel-t-PA. t-PA-delta FE has a comparable specific thrombolytic activity but a lower fibrin specificity than Mel-t-PA. After the end of the infusion, t-PA-related antigen disappeared from plasma with an initial t1/2 of four minutes for Mel-t-PA, 25 minutes for t-PA-delta FE, 42 minutes for t-PA-delta FE1X, and 14 minutes for t-PA-delta FE3X. It is concluded that t-PA can be modified by deletion mutagenesis to yield variants with a markedly longer half-life in the blood. Some of these variants have a specific thrombolytic activity and fibrin specificity similar to that of natural t-PA. These variants may be useful to identify the structures in t-PA responsible for its clearance, specific thrombolytic activity, and fibrin specificity in vivo.


Sign in / Sign up

Export Citation Format

Share Document