scholarly journals Unidirectional response to bidirectional selection on body size. I. Phenotypic, life‐history, and endocrine responses

2020 ◽  
Vol 10 (19) ◽  
pp. 10571-10592 ◽  
Author(s):  
Clémentine Renneville ◽  
Alexis Millot ◽  
Simon Agostini ◽  
David Carmignac ◽  
Gersende Maugars ◽  
...  
Authorea ◽  
2020 ◽  
Author(s):  
Cl mentine Renneville ◽  
Alexis Millot ◽  
Simon Agostini ◽  
David Carmignac ◽  
Gersende Maugars ◽  
...  

2005 ◽  
Vol 165 (5) ◽  
pp. 600
Author(s):  
Nick J. B. Isaac ◽  
Jones ◽  
Gittleman ◽  
Purvis

2018 ◽  
Vol 49 (1) ◽  
pp. 379-408 ◽  
Author(s):  
Roger B.J. Benson

Dinosaurs were large-bodied land animals of the Mesozoic that gave rise to birds. They played a fundamental role in structuring Jurassic–Cretaceous ecosystems and had physiology, growth, and reproductive biology unlike those of extant animals. These features have made them targets of theoretical macroecology. Dinosaurs achieved substantial structural diversity, and their fossil record documents the evolutionary assembly of the avian body plan. Phylogeny-based research has allowed new insights into dinosaur macroevolution, including the adaptive landscape of their body size evolution, patterns of species diversification, and the origins of birds and bird-like traits. Nevertheless, much remains unknown due to incompleteness of the fossil record at both local and global scales. This presents major challenges at the frontier of paleobiological research regarding tests of macroecological hypotheses and the effects of dinosaur biology, ecology, and life history on their macroevolution.


2021 ◽  
Author(s):  
Kha Sach Ngo ◽  
Berta R‐Almási ◽  
Zoltán Barta ◽  
Jácint Tökölyi

2006 ◽  
Vol 58 (4) ◽  
pp. 562-566 ◽  
Author(s):  
C. Reigada ◽  
W.A.C. Godoy

The effect of larval density on the survival, fecundity and body size at two temperatures in experimental populations of C. megacephala was studied. No effect from simultaneous influence of density and temperature on life history characteristics of C. megacephala was found. Significant effects of density and temperature on survival, fecundity and body size were observed. The importance of these results for the population dynamics of C. megacephala is discussed.


2014 ◽  
Vol 51 (11) ◽  
pp. 1023-1033 ◽  
Author(s):  
Evan Vanderven ◽  
Michael E. Burns ◽  
Philip J. Currie

The Danek Bonebed (Edmonton, Alberta, Canada) is a monodominant Edmontosaurus regalis assemblage of the upper Campanian (Upper Cretaceous) Horseshoe Canyon Formation. Bone histology of humeri and femora are used in this paper to test hypotheses about the growth dynamics and palaeobiology of Edmontosaurus. The high number of elements collected from the Danek Bonebed allow for an expansion of the multi-element histological record for hadrosaurs. Results indicate that Edmontosaurus had a growth trajectory similar to other large-bodied dinosaurs and reached the onset of somatic maturity at about 10–15 years of age; however, even the largest elements to preserve lines of arrested growth do not have external fundamental systems. This timing of the onset of somatic maturity agrees with the estimated body size of Edmontosaurus relative to other dinosaurs for which life-history data are available. Vascularity patterns support the hypothesis that edmontosaurs preserved at the Danek Bonebed were not subject to the same extreme seasonal environmental shifts as congenerics preserved at higher latitudes, further supporting overwintering behaviour in the latter.


2018 ◽  
Vol 93 ◽  
pp. 36-44 ◽  
Author(s):  
Manuel A. Otero ◽  
Favio E. Pollo ◽  
Pablo R. Grenat ◽  
Nancy E. Salas ◽  
Adolfo L. Martino

2020 ◽  
Author(s):  
Eli Amson ◽  
Faysal Bibi

AbstractThe skeleton is involved in most aspects of vertebrate life history. Previous macroevolutionary analyses have shown that structural, historical, and functional factors influence the gross morphology of bone. The inner structure of bone has, however, received comparatively little attention. Here we address this gap in our understanding of vertebrate evolution by quantifying bone structure in appendicular and axial elements (humerus and mid-lumbar vertebra) across therian mammals (placentals + marsupials). Our sampling captures all transitions to aerial, fully aquatic, and subterranean lifestyles in extant mammal clades. We found that mammalian inner bone structure is highly disparate. We show that vertebral structure mostly correlates with body size, but not lifestyle, while the opposite is true for humeral structure. The latter also shows a high degree of convergence among the clades that have acquired specialised lifestyles. Our results suggest that radically different extrinsic constraints can apply to bone structure in different skeletal elements.


Sign in / Sign up

Export Citation Format

Share Document