Stability analysis of periodic solutions in nonautonomous systems with hysteretic elements

Author(s):  
Tetsuji Matsuo ◽  
Akira Kishima
2012 ◽  
Vol 05 (03) ◽  
pp. 1260017 ◽  
Author(s):  
LING CHEN ◽  
WANBIAO MA

In this paper, based on some biological meanings and a model which was proposed by Lefever and Garay (1978), a nonlinear delay model describing the growth of tumor cells under immune surveillance against cancer is given. Then, boundedness of the solutions, local stability of the equilibria and Hopf bifurcation of the model are discussed in details. The existence of periodic solutions explains the restrictive interactions between immune surveillance and the growth of the tumor cells.


Author(s):  
S. Pernot ◽  
C. H. Lamarque

Abstract A Wavelet-Galerkin procedure is introduced in order to obtain periodic solutions of multidegrees-of-freedom dynamical systems with periodic time-varying coefficients. The procedure is then used to study the vibrations of parametrically excited mechanical systems. As problems of stability analysis of nonlinear systems are often reduced after linearization to problems involving linear differential systems with time-varying coefficients, we demonstrate the method provides efficient practical computations of Floquet exponents and consequently allows to give estimators for stability/instability levels. A few academic examples illustrate the relevance of the method.


Sign in / Sign up

Export Citation Format

Share Document