bipedal walking
Recently Published Documents


TOTAL DOCUMENTS

618
(FIVE YEARS 116)

H-INDEX

38
(FIVE YEARS 4)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Osman Darici ◽  
Arthur D Kuo

The simple task of walking up a sidewalk curb is actually a dynamic prediction task. The curb is a disturbance that could cause a loss of momentum if not anticipated and compensated for. It might be possible to adjust momentum sufficiently to ensure undisturbed time of arrival, but there are infinite possible ways to do so. Much of steady, level gait is determined by energy economy, which should be at least as important with terrain disturbances. It is, however, unknown whether economy also governs walking up a curb, and whether anticipation helps. Here we show that humans compensate with an anticipatory pattern of forward speed adjustments, predicted by a criterion of minimizing mechanical energy input. The strategy is mechanistically predicted by optimal control for a simple model of bipedal walking dynamics, with each leg's push-off work as input. Optimization predicts a tri-phasic trajectory of speed (and thus momentum) adjustments, including an anticipatory phase. In experiment, human subjects ascend an artificial curb with the predicted tri-phasic trajectory, which approximately conserves overall walking speed relative to undisturbed flat ground. The trajectory involves speeding up in a few steps before the curb, losing considerable momentum from ascending it, and then regaining speed in a few steps thereafter. Descending the curb entails a nearly opposite, but still anticipatory, speed fluctuation trajectory, in agreement with model predictions that speed fluctuation amplitudes should scale linearly with curb height. The fluctuation amplitudes also decrease slightly with faster average speeds, also as predicted by model. Humans can reason about the dynamics of walking to plan anticipatory and economical control, even with a sidewalk curb in the way.


Author(s):  
Lokesh Krishna Rajan ◽  
Guillermo Castillo ◽  
Utkarsh Aashu Mishra ◽  
Ayonga Hereid ◽  
Shishir Kolathaya
Keyword(s):  

Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Honghao Liu ◽  
Bo Li ◽  
Minjian Zhang ◽  
Chuankai Dai ◽  
Pengcheng Xi ◽  
...  

Humans and other animals can quickly respond to unexpected terrains during walking, but little is known about the cortical dynamics in this process. To study the impact of unexpected terrains on brain activity, we allowed rats with blocked vision to walk on a treadmill in a bipedal posture and then walk on an uneven area at a random position on the treadmill belt. Whole brain EEG signals and hind limb kinematics of bipedal-walking rats were recorded. After encountering unexpected terrain, the θ band power of the bilateral M1, the γ band power of the left S1, and the θ to γ band power of the RSP significantly decreased compared with normal walking. Furthermore, when the rats left uneven terrain, the β band power of the bilateral M1 and the α band power of the right M1 decreased, while the γ band power of the left M1 significantly increased compared with normal walking. Compared with the flat terrain, the θ to low β (3–20 Hz) band power of the bilateral S1 increased after the rats contacted the uneven terrain and then decreased in the single- or double- support phase. These results support the hypothesis that unexpected terrains induced changes in cortical activity.


Author(s):  
François Druelle ◽  
Jonathan Özçelebi ◽  
François Marchal ◽  
Gilles Berillon

PAMM ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yinnan Luo ◽  
Marten Zirkel ◽  
Ulrich J. Römer ◽  
Lena Zentner ◽  
Alexander Fidlin

Author(s):  
Xiaohu Jia ◽  
Bo Zhang ◽  
Xiaoyu Gao ◽  
Jiaxu Zhou

Crawling is recommended for avoiding high heat and toxic fumes and for obtaining more breathable air during evacuations. Few studies have evaluated the effects of crawling on physical joints and velocity, especially in children. Based on motion capture technology, this study proposes a novel method of using wearable sensors to collect exposure (e.g., mean duration, frequency) on children’s joints to objectively quantify the impacts of different locomotion methods on physical characteristics. An on-site experiment was conducted in a kindergarten with 28 children (13 boys and 15 girls) of different ages (4–6 years old) who traveled up to 22 m in three different postures: upright walking (UW), stoop walking (SW), and knee and hand crawling (KHC). The results showed that: (1) The level of joint fatigue for KHC was heavier than bipedal walking (p < 0.05), which was evidenced by higher mean duration and frequency. There was no significant difference between UW and SW (p > 0.05). (2) The physical characteristics of the children in the different postures observed in this study were different (p < 0.05). The ankle was more fatigued than other joints during bipedal walking. Unlike infants, the wrists and hips of the children became fatigued while crawling. The key actions flexion/extension are more likely to induce joint fatigue vs. other actions. (3) Crawling velocity was significantly slower than the bipedal velocities, and UW was 10.6% faster than SW (p < 0.05). The bipedal walking velocity started to decrease after the children had travelled up to 13 m, while the KHC velocity started to decrease after traveling up to 11.6 m. (4) In a severe fire, the adoption of SW is suggested, as the evacuees can both evacuate quickly and avoid overworking their joints. (5) There were no significant differences in the age (p > 0.05) and gender (p > 0.05) of the children on the joints in any of the three postures. To conclude, KHC causes more damage to body joints compared to bipedal walking, as evidenced by higher exposure (mean duration, frequency), whereas UW and SW are similar in terms of the level of joint fatigue. The above findings are expected to provide a useful reference for future applications in the children’s risk assessment and in the prevention design of buildings.


Sign in / Sign up

Export Citation Format

Share Document