Formula of boundary integral for the higher-order element in boundary element method and error of solution

1985 ◽  
Vol 105 (1) ◽  
pp. 45-52
Author(s):  
Toshihiko Kuwabara ◽  
Tsuyoshi Takeda
2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Jui-Hsiang Kao

This research develops an Advance-Tracing Boundary Element Method in the time domain to calculate the waves that radiate from an immersed obstacle moving with random acceleration. The moving velocity of the immersed obstacle is multifrequency and is projected along the normal direction of every element on the obstacle. The projected normal velocity of every element is presented by the Fourier series and includes the advance-tracing time, which is equal to a quarter period of the moving velocity. The moving velocity is treated as a known boundary condition. The computing scheme is based on the boundary integral equation in the time domain, and the approach process is carried forward in a loop from the first time step to the last. At each time step, the radiated pressure on each element is updated until obtaining a convergent result. The Advance-Tracing Boundary Element Method is suitable for calculating the radiating problem from an arbitrary obstacle moving with random acceleration in the time domain and can be widely applied to the shape design of an immersed obstacle in order to attain security and confidentiality.


Author(s):  
Yijun Liu ◽  
Milind Bapat

Some recent development of the fast multipole boundary element method (BEM) for modeling acoustic wave problems in both 2-D and 3-D domains are presented in this paper. First, the fast multipole BEM formulation for 2-D acoustic wave problems based on a dual boundary integral equation (BIE) formulation is presented. Second, some improvements on the adaptive fast multipole BEM for 3-D acoustic wave problems based on the earlier work are introduced. The improvements include adaptive tree structures, error estimates for determining the numbers of expansion terms, refined interaction lists, and others in the fast multipole BEM. Examples involving 2-D and 3-D radiation and scattering problems solved by the developed 2-D and 3-D fast multipole BEM codes, respectively, will be presented. The accuracy and efficiency of the fast multipole BEM results clearly demonstrate the potentials of the fast multipole BEM for solving large-scale acoustic wave problems that are of practical significance.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Sofia Sarraf ◽  
Ezequiel López ◽  
Laura Battaglia ◽  
Gustavo Ríos Rodríguez ◽  
Jorge D'Elía

In the boundary element method (BEM), the Galerkin weighting technique allows to obtain numerical solutions of a boundary integral equation (BIE), giving the Galerkin boundary element method (GBEM). In three-dimensional (3D) spatial domains, the nested double surface integration of GBEM leads to a significantly larger computational time for assembling the linear system than with the standard collocation method. In practice, the computational time is roughly an order of magnitude larger, thus limiting the use of GBEM in 3D engineering problems. The standard approach for reducing the computational time of the linear system assembling is to skip integrations whenever possible. In this work, a modified assembling algorithm for the element matrices in GBEM is proposed for solving integral kernels that depend on the exterior unit normal. This algorithm is based on kernels symmetries at the element level and not on the flow nor in the mesh. It is applied to a BIE that models external creeping flows around 3D closed bodies using second-order kernels, and it is implemented using OpenMP. For these BIEs, the modified algorithm is on average 32% faster than the original one.


2019 ◽  
Vol 35 (6) ◽  
pp. 839-850
Author(s):  
Y. C. Shiah ◽  
Nguyen Anh Tuan ◽  
M.R. Hematiyan

ABSTRACTIn engineering applications, it is pretty often to have domain heat source involved inside. This article proposes an approach using the boundary element method to study thermal stresses in 3D anisotropic solids when internal domain heat source is involved. As has been well noticed, thermal effect will give rise to a volume integral, where its direct evaluation will need domain discretization. This shall definitely destroy the most distinctive notion of the boundary element method that only boundary discretization is required. The present work presents an analytical transformation of the volume integral in the boundary integral equation due to the presence of internal volume heat source. For simplicity, distribution of the heat source is modeled by a quadratic function. When needed, the formulations can be further extended to treat higher-ordered volume heat sources. Indeed, the present work has completely restored the boundary discretization feature of the boundary element method for treating 3D anisotropic thermoelasticity involving volume heat source.


2005 ◽  
Vol 73 (6) ◽  
pp. 959-969 ◽  
Author(s):  
R. Balderrama ◽  
A. P. Cisilino ◽  
M. Martinez

A boundary element method (BEM) implementation of the energy domain integral (EDI) methodology for the numerical analysis of three-dimensional fracture problems considering thermal effects is presented in this paper. The EDI is evaluated from a domain representation naturally compatible with the BEM, since stresses, strains, temperatures, and derivatives of displacements and temperatures at internal points can be evaluated using the appropriate boundary integral equations. Special emphasis is put on the selection of the auxiliary function that represents the virtual crack advance in the domain integral. This is found to be a key feature to obtain reliable results at the intersection of the crack front with free surfaces. Several examples are analyzed to demonstrate the efficiency and accuracy of the implementation.


2010 ◽  
Vol 20-23 ◽  
pp. 76-81 ◽  
Author(s):  
Hai Lian Gui ◽  
Qing Xue Huang

Based on fast multipole boundary element method (FM-BEM) and mixed variational inequality, a new numerical method named mixed fast multipole boundary element method (MFM-BEM) was presented in this paper for solving three-dimensional elastic-plastic contact problems. Mixed boundary integral equation (MBIE) was the foundation of MFM-BEM and obtained by mixed variational inequality. In order to adapt the requirement of fast multipole method (FMM), Taylor series expansion was used in discrete MBIE. In MFM-BEM the calculation time was significant decreased, the calculation accuracy and continuity was also improved. These merits of MFM-BEM were demonstrated in numerical examples. MFM-BEM has broad application prospects and will take an important role in solving large-scale engineering problems.


Sign in / Sign up

Export Citation Format

Share Document