Output voltage control method of PWM-controlled cycloconverters with space vectors

1991 ◽  
Vol 111 (5) ◽  
pp. 117-126 ◽  
Author(s):  
Akio Ishiguro ◽  
Takeshi Furuhashi ◽  
Shigeru Okuma ◽  
Yoshiki Uchikawa ◽  
Muneaki Ishida
1990 ◽  
Vol 110 (6) ◽  
pp. 655-663 ◽  
Author(s):  
Akio Ishiguro ◽  
Takeshi Furuhashi ◽  
Muneaki Ishida ◽  
Shigeru Okuma ◽  
Yoshiki Uchikawa

2021 ◽  
Vol 9 ◽  
Author(s):  
Jiawen Li ◽  
Yaping Li ◽  
Tao Yu

A data-driven PEMFC output voltage control method is proposed. Moreover, an Improved deep deterministic policy gradient algorithm is proposed for this method. The algorithm introduces three techniques: Clipped multiple Q-learning, policy delay update, and policy smoothing to improve the robustness of the control policy. In this algorithm, the hydrogen controller is treated as an agent, which is pre-trained to fully interact with the environment and obtain the optimal control policy. The effectiveness of the proposed algorithm is demonstrated experimentally.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiawen Li ◽  
Yaping Li ◽  
Tao Yu

In order to improve the stability of proton exchange membrane fuel cell (PEMFC) output voltage, a data-driven output voltage control strategy based on regulation of the duty cycle of the DC-DC converter is proposed in this paper. In detail, an imitation-oriented twin delay deep deterministic (IO-TD3) policy gradient algorithm which offers a more robust voltage control strategy is demonstrated. This proposed output voltage control method is a distributed deep reinforcement learning training framework, the design of which is guided by the pedagogic concept of imitation learning. The effectiveness of the proposed control strategy is experimentally demonstrated.


2021 ◽  
Vol 19 ◽  
pp. 155-159
Author(s):  
Minh-Duc Pham ◽  
◽  
Hong-Hee Lee

Due to line impedance mismatch among renewable energy sources (RESs), it is hard to realize accurate power sharing in the DC microgrid system. To solve this issue, a distributed power sharing strategy for adjusting the RES output voltage is developed by adding shifted output voltage into each local controller. Thanks to the shifted voltage, the influence of voltage drop caused by the droop controller is effectively mitigated, so that the DC bus voltage is constantly balanced regardless of the load changes. The proposed method is realized with a centralized approach, and all the required control variable to determine the reference voltage is transmitted through low-bandwidth communication. The controller design and system stability are analyzed in detail with a simplified microgrid model. Small-scale DC microgrid is simulated to verify the effectiveness of the centralized shifted voltage control method.


2011 ◽  
Vol 131 (11) ◽  
pp. 1331-1337 ◽  
Author(s):  
Junji Shibata ◽  
Kazuhide Kaneko ◽  
Kiyoshi Ohishi ◽  
Itaru Ando ◽  
Mina Ogawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document