x ray computed
Recently Published Documents





2022 ◽  
Vol 210 ◽  
pp. 105886
Suman Budhathoki ◽  
Jasmeet Lamba ◽  
Puneet Srivastava ◽  
Colleen Williams ◽  
Francisco Arriaga ◽  

2022 ◽  
Vol 260 ◽  
pp. 106702
Johannes A.J. Huber ◽  
Olof Broman ◽  
Mats Ekevad ◽  
Johan Oja ◽  
Lars Hansson

2022 ◽  
Vol 12 (1) ◽  
Christopher J. Stubbs ◽  
Ryan Larson ◽  
Douglas D. Cook

AbstractThe maize (Zea mays) stem is a biological structure that must balance both biotic and structural load bearing duties. These competing requirements are particularly relevant in the design of new bioenergy crops. Although increased stem digestibility is typically associated with a lower structural strength and higher propensity for lodging, with the right balance between structural and biological activities it may be possible to design crops that are high-yielding and have digestible biomass. This study investigates the hypothesis that geometric factors are much more influential in determining structural strength than tissue properties. To study these influences, both physical and in silico experiments were used. First, maize stems were tested in three-point bending. Specimen-specific finite element models were created based on x-ray computed tomography scans. Models were validated by comparison with experimental data. Sensitivity analyses were used to assess the influence of structural parameters such as geometric and material properties. As hypothesized, geometry was found to have a much stronger influence on structural stability than material properties. This information reinforces the notion that deficiencies in tissue strength could be offset by manipulation of stalk morphology, thus allowing the creation of stalks which are both resilient and digestible.

10.5006/3960 ◽  
2022 ◽  
Lisa Blanchard ◽  
Kasra Sotoudeh ◽  
H Toda ◽  
K. Hirayama ◽  
Hongbiao Dong

This paper is associated with a larger programme of research, studying the resistance to hydrogen-induced stress cracking (HISC) of a wrought and a hot isostatically-pressed (HIP) UNS S31803 duplex stainless steel (DSS), with respect to both the independent and interactive effects of the three key components of HISC: microstructure, stress/strain, and hydrogen. In the first part presented here, several material properties such as the three-dimensional (3D) microstructure, distribution and morphology/geometry of the two phases, i.e. ferrite and austenite, and their significance on hydrogen transport have been determined quantitatively, using X-ray computed tomography (CT) microstructural data analysis and modelling. This provided a foundation for the study to compare resistance to HISC initiation and propagation of the two DSSs with differing microstructures, using hydrogen permeation measurements, environmental fracture toughness testing of single-edge notched bend test specimens, in the Part 2 paper of this study [1].

Matthias Busch ◽  
Tino Hausotte

AbstractSurface determination is an essential step of the measurement process in industrial X-ray computed tomography (XCT). The starting point of the surface determination process step is a single grey value threshold within a voxel volume in conventional surface determination methods. However, this value is not always found in the reconstructed volume in the local environment of the surface of the measurement object due to various artefacts, so that none or incorrect surfaces are determined. In order to find surfaces independently of a single grey value, a three-dimensional approach of the initial contour determination based on a Prewitt edge detection algorithm is presented in this work. This method is applied to different test specimens and specimen compositions which, due to their material or material constellation, their geometric properties with regard to surfaces and interfaces as well as their calibrated size and length dimensions, embody relevant properties in the examination of joining connections. It is shown that by using the surface determination method in the measurement process, both a higher metrological structure resolution and interface structure resolution can be achieved. Surface artefacts can be reduced by the application and it is also an approach to improved surface finding for the multi-material components that are challenging for XCT.

Plant Methods ◽  
2022 ◽  
Vol 18 (1) ◽  
Daniel Crozier ◽  
Oscar Riera-Lizarazu ◽  
William L. Rooney

Abstract Background The structural characteristics of whole sorghum kernels are known to affect end-use quality, but traditional evaluation of this structure is two-dimensional (i.e., cross section of a kernel). Current technology offers the potential to consider three-dimensional structural characteristics of grain. X-ray computed tomography (CT) presents one such opportunity to nondestructively extract quantitative data from grain caryopses which can then be related to end-use quality. Results Phenotypic measurements were extracted from CT scans of grain sorghum caryopses. Extensive phenotypic variation was found for embryo volume, endosperm hardness, endosperm texture, endosperm volume, pericarp volume, and kernel volume. CT derived estimates were strongly correlated with ground truth measurements enabling the identification of genotypes with superior structural characteristics. Conclusions Presented herein is a phenotyping pipeline developed to quantify three-dimensional structural characteristics from grain sorghum caryopses which increases the throughput efficiency of previously difficult to measure traits. Adaptation of this workflow to other small-seeded crops is possible providing new and unique opportunities for scientists to study grain in a nondestructive manner which will ultimately lead to improvements end-use quality.

2022 ◽  
pp. 43-59
Victoria Chikatueva ◽  
Nikita Stepanov ◽  
Andrey Chitalin ◽  
Dmitry Korost

Orogenic gold-quartz deposits have a clear structural control and are accompanied by wallrock metasomatic alteration. However, in detailed modeling of such deposits, there is often a mismatch between the structural plans for high-grade ore zone distribution and metasomatite zones, and the latter are not always associated with faults. This is explained by the evolution of the hydrothermal process and the pulsating nature of the development of the territory. In the early stages of the mineral deposit study, it is very important to reliably determine the distribution of ore zones, since the correct targeting of the drilling program and the economic deposit assessment depend on it. The problem can be solved using the method of X-ray computed tomography (СТ) in the core study. This paper presents the methodology of studying fullsize core samples of gold deposits by using CT. A core sample characterizing the central part of ore body of Drazhnoye deposit (Tarynskoye ore field, Republic of Sakha (Yakutia)) was used as the study material. The sample studied was scanned by a SIEMENS Somatom Perspective tomograph at two energies (80 and 130 keV). As a result, a detailed three-dimensional stereological model of the core was obtained, which made it possible not only to study the distribution of ore minerals in the volume of the entire sample, but also to identify vein bodies of different ages, as well as to study their morphology and trace the distribution patterns of ore mineralization in them. Based on the study results, we can offer a preliminary interpretation of ore mineralization and vein formation sequence.

2022 ◽  
pp. 002199832110619
Sebastian Rosini ◽  
Mark N Mavrogordato ◽  
Tsuneo Takano ◽  
Naoki Sugiura ◽  
S Mark Spearing ◽  

In situ synchrotron radiation computed tomography (SRCT) was used to compare the fibre damage progression in five configurations of (902/02)s carbon-epoxy coupons loaded to failure. The effects of different sizing types, surface treatments and fibre diameters on the macroscopic properties, for example, ultimate tensile strength (UTS), and on the damage accumulation at a microscopic scale, for example, fibre break accumulation, were assessed. A semi-automated approach was adopted to process the large amount of data obtained from the SRCT scans and further method applicability areas can be envisaged. Single fibre break accumulation was seen to be influenced by the fibre type, while the formation of interacting fibre break groups by the surface treatment and the sizing type. For the materials presented, it can be suggested that an increased defect tolerance can be obtained by moving from stronger to weaker fibre-matrix adhesion, with sub-critical multiplet behaviour emerging as independent of the average UTS value.

Sign in / Sign up

Export Citation Format

Share Document