In Situ Generation of Nitroso Compounds from Catalytic Hydrogen Peroxide Oxidation of Primary Aromatic Amines and Their One-Pot Use in Hetero-Diels–Alder Reactions

2007 ◽  
Vol 2007 (26) ◽  
pp. 4431-4436 ◽  
Author(s):  
Dongbo Zhao ◽  
Mikael Johansson ◽  
Jan-E. Bäckvall
2016 ◽  
Vol 12 ◽  
pp. 406-412 ◽  
Author(s):  
Vladimir A D’yakonov ◽  
Alevtina L Makhamatkhanova ◽  
Rina A Agliullina ◽  
Leisan K Dilmukhametova ◽  
Tat’yana V Tyumkina ◽  
...  

An efficient one-pot process for the synthesis of 3-substituted phospholanes and α,ω-bisphospholanes was developed. The method involves the replacement of aluminium in aluminacyclopentanes, prepared in situ by catalytic cycloalumination of α-olefins and α,ω-diolefins, by phosphorus atoms on treatment with dichlorophosphines (R′PCl2). Hydrogen peroxide oxidation and treatment with S8 of the synthesized phospholanes and α,ω-bisphospholanes afforded the corresponding 3-alkyl(aryl)-1-alkyl(phenyl)phospholane 1-oxides, 3-alkyl(aryl)-1-alkyl(phenyl)phospholane 1-sulfides, bisphospholane 1,1'-dioxides, and bisphospholane 1,1'-disulfides in nearly quantitative yields. The complexes LMo(CO)5 (L = 3-hexyl-1-phenylphospholane, 3-benzyl-1-methylphospholane, 1,2-bis(1-phenylphospholan-3-yl)ethane, and 1,6-bis(1-phenylphospholan-3-yl)hexane were prepared by the reaction of 3-substituted phospholanes and α,ω-bisphospholanes with molybdenum hexacarbonyl. The structure of the complexes was proved by multinuclear 1H, 13C, and 31P spectroscopy.


2009 ◽  
Vol 2009 (8) ◽  
pp. 499-504 ◽  
Author(s):  
Jianjun Li ◽  
Jia Li ◽  
Weike Su

Proline triflate was found to catalyse efficiently the one-pot synthesis of 2H-pyranotetrahydroquinolines from aryl imines, and 3,4-dihydro-2 H-pyran with high stereoselectivity. The aryl imines were formed in situ from aromatic amines and arylaldehydes.


2021 ◽  
Author(s):  
Goutam Brahmachari ◽  
Indrajit Karmakar ◽  
Pintu Karmakar

A one-pot procedure for the synthesis of biologically relevant coumarin-hydrazones by a three-component reaction between 4-hydrocoumarins, primary aromatic amines and tert-butyl nitrite under ball-milling in the absence of any catalyst/additive...


2007 ◽  
Vol 40 (2) ◽  
pp. 191-198 ◽  
Author(s):  
Hakan Durmaz ◽  
Aydan Dag ◽  
Ozcan Altintas ◽  
Tuba Erdogan ◽  
Gurkan Hizal ◽  
...  

2019 ◽  
Vol 74 (3-4) ◽  
pp. 101-104 ◽  
Author(s):  
Milja Pesic ◽  
Sébastien Jean-Paul Willot ◽  
Elena Fernández-Fueyo ◽  
Florian Tieves ◽  
Miguel Alcalde ◽  
...  

Abstract There is an increasing interest in the application of peroxygenases in biocatalysis, because of their ability to catalyse the oxyfunctionalisation reaction in a stereoselective fashion and with high catalytic efficiencies, while using hydrogen peroxide or organic peroxides as oxidant. However, enzymes belonging to this class exhibit a very low stability in the presence of peroxides. With the aim of bypassing this fast and irreversible inactivation, we study the use of a gradual supply of hydrogen peroxide to maintain its concentration at stoichiometric levels. In this contribution, we report a multienzymatic cascade for in situ generation of hydrogen peroxide. In the first step, in the presence of NAD+ cofactor, formate dehydrogenase from Candida boidinii (FDH) catalysed the oxidation of formate yielding CO2. Reduced NADH was reoxidised by the reduction of the flavin mononucleotide cofactor bound to an old yellow enzyme homologue from Bacillus subtilis (YqjM), which subsequently reacts with molecular oxygen yielding hydrogen peroxide. Finally, this system was coupled to the hydroxylation of ethylbenzene reaction catalysed by an evolved peroxygenase from Agrocybe aegerita (rAaeUPO). Additionally, we studied the influence of different reaction parameters on the performance of the cascade with the aim of improving the turnover of the hydroxylation reaction.


Sign in / Sign up

Export Citation Format

Share Document