Evaluation of the structural damage of high-rise reinforced concrete buildings using ambient vibrations recorded before and after damage

2015 ◽  
Vol 45 (2) ◽  
pp. 213-228 ◽  
Author(s):  
Hirotoshi Uebayashi ◽  
Masayuki Nagano ◽  
Takenori Hida ◽  
Takehiko Tanuma ◽  
Mitoshi Yasui ◽  
...  
2013 ◽  
Vol 40 (8) ◽  
pp. 693-710 ◽  
Author(s):  
Murat Saatcioglu ◽  
Dan Palermo ◽  
Ahmed Ghobarah ◽  
Denis Mitchell ◽  
Rob Simpson ◽  
...  

The paper presents observed damage in reinforced concrete buildings during the 27 February 2010 Maule earthquake in Chile. Performance of concrete frame and shear wall buildings are discussed with emphasis on seismic deficiencies in design and construction practices. It is shown that the majority of structural damage in multistorey and high-rise buildings can be attributed to poor performance of slender shear walls, without confined boundary elements, suffering from crushing of concrete and buckling of vertical wall reinforcement. Use of irregular buildings, lack of seismic detailing, and the interference of nonstructural elements were commonly observed seismic deficiencies. A comparison is made between Chilean and Canadian design practices with references made to the applicable code clauses. Lessons are drawn from the observed structural performance.


2013 ◽  
Vol 13 (7) ◽  
pp. 1903-1912 ◽  
Author(s):  
R. Ditommaso ◽  
M. Vona ◽  
M. R. Gallipoli ◽  
M. Mucciarelli

Abstract. The aim of this paper is an empirical estimation of the fundamental period of reinforced concrete buildings and its variation due to structural and non-structural damage. The 2009 L'Aquila earthquake has highlighted the mismatch between experimental data and code provisions value not only for undamaged buildings but also for the damaged ones. The 6 April 2009 L'Aquila earthquake provided the first opportunity in Italy to estimate the fundamental period of reinforced concrete (RC) buildings after a strong seismic sequence. A total of 68 buildings with different characteristics, such as age, height and damage level, have been investigated by performing ambient vibration measurements that provided their fundamental translational period. Four different damage levels were considered according with the definitions by EMS 98 (European Macroseismic Scale), trying to regroup the estimated fundamental periods versus building heights according to damage. The fundamental period of RC buildings estimated for low damage level is equal to the previous relationship obtained in Italy and Europe for undamaged buildings, well below code provisions. When damage levels are higher, the fundamental periods increase, but again with values much lower than those provided by codes. Finally, the authors suggest a possible update of the code formula for the simplified estimation of the fundamental period of vibration for existing RC buildings, taking into account also the inelastic behaviour.


Sign in / Sign up

Export Citation Format

Share Document