rc buildings
Recently Published Documents


TOTAL DOCUMENTS

678
(FIVE YEARS 228)

H-INDEX

31
(FIVE YEARS 5)

Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 72
Author(s):  
Rabindra Adhikari ◽  
Rajesh Rupakhety ◽  
Prajwal Giri ◽  
Rewati Baruwal ◽  
Ramesh Subedi ◽  
...  

Most of the reinforced concrete buildings in Nepal are low-rise construction, as this type of construction is the most dominant structural form adopted to construct residential buildings in urban and semi-urban neighborhoods throughout the country. The low-rise residential constructions generally follow the guidelines recommended by the Nepal Building Code, especially the mandatory rules of thumb. Although low-rise buildings have brick infills and are randomly constructed, infill walls and soil–structure interaction effects are generally neglected in the design and assessment of such structures. To this end, bare frame models that are used to represent such structures are questionable, especially when seismic vulnerability analysis is concerned. To fulfil this gap, we performed seismic vulnerability analysis of low-rise residential RC buildings considering infill walls and soil–structure interaction effects. Considering four analysis cases, we outline comparative seismic vulnerability for various analysis cases in terms of fragility functions. The sum of observations highlights that the effects of infills, and soil–structure interaction are damage state sensitive for low-rise RC buildings. Meanwhile, the design considerations will be significantly affected since some performance parameters are more sensitive than the overall fragility. We also observed that the analytical fragility models fundamentally overestimate the actual seismic fragility in the case of low-rise RC buildings.


2021 ◽  
Author(s):  
Lorenzo Badini ◽  
Ing. Patrik Aondio ◽  
Stephan Ott ◽  
Stefan Winter

Abstract In this study a timber-based integrated solution is presented to solve at once common issues affecting typical reinforced concrete (RC) existing buildings, such as seismic and energy performances, providing an eco-friendly alternative to steel external bracing systems. Cross-laminated timber (CLT) walls are provided perpendicularly to the external façades as strengthening elements while interposed CLT slabs are foreseen at each floor level to host new architectural units together with a new envelope. While the connections to the foundations and to the existing RC frames are provided respectively with steel brackets and axial-connectors distributed along the height of the building, a post-tensioned connection, between CLT panels (PT-CLT connection), is implemented in the system to guarantee resistance to horizontal actions acting parallel to existing façades with consequent structural independence and architectural freedom. A numerical model is developed with finite element software characterizing each type of connector for linear and non-linear analyses. Modal analyses with response spectrum are performed to verify structural elements and connectors, while pushover analyses with target displacement checks are performed to assess the obtained seismic improvement. Finally, the preassembled architectural components that allow to renovate the envelope and the provided assembly procedure are revealed.


Author(s):  
Konstantinos Morfidis ◽  
Konstantinos Kostinakis

The angle of seismic excitation is a significant factor of the seismic response of RC buildings. The procedure required for the calculation of the angle for which the potential seismic damage is maximized (critical angle) contains multiple nonlinear time history analyses using in each one of them different angles of incidence. Moreover, the seismic codes recommend the application of more than one accelerograms for the evaluation of seismic response. Thus, the whole procedure becomes time consuming. Herein, a method to reduce the time required for the estimation of the critical angle based on Multilayered Feedforward Perceptron Neural Networks is proposed. The basic idea is the detection of cases in which the critical angle increases the class of seismic damage compared to the class which arises from the application of the seismic motion along the buildings’ structural axes. To this end, the problem is expressed and solved as Pattern Recognition problem. As inputs of networks the ratios of seismic parameters’ values along the two horizontal seismic records' components, as well as appropriately chosen structural parameters, were used. The results of analyses show that the neural networks can reliably detect the cases in which the calculation of the critical angle is essential.


2021 ◽  
Vol 11 (24) ◽  
pp. 11737
Author(s):  
Hui Jin ◽  
Qing Chun ◽  
Chengwen Zhang ◽  
Yidan Han

Square rebars were developed and used for decades in the early development of reinforced concrete (RC) structures; however, the objectives of modern concrete structure durability analyses and standards are centered on round rebars in past decades, which are not suited for RC buildings utilizing square rebars. Considering the absence of proper evaluation techniques to evaluate the square rebar RC structures’ durability accurately, a novel durability prediction method has been proposed for this type of historical building. The method is based on major parts as in-situ investigation, finite element model simulation, component importance analysis, and structural durability prediction. The durability prediction calculation method was established on the experimental results of the realistic historical concrete tests and corrosion-induced cover cracking experiments for square rebar components. It was found that the carbonization-resistant ability of historical concretes was relatively weaker than that of current concretes and the calculation method for critical corrosion depth of square rebar was different from that of round rebar. Furthermore, two typical application cases are presented to introduce the procedure of the method in detail. Consequently, the research outcomes can be directly used on the durability prediction and protection works for historical RC buildings.


2021 ◽  
Author(s):  
Momen Mohamed Ahmed ◽  
Mohamed Abdel-Basset Abdo ◽  
Waleed Abo El-Wafa Mohamed

Abstract Most international design codes consider the nonlinear seismic performance of a structure by the concept of reduction/modification factor (R). Then, an elastic static force-based method can be normally used for seismic design to create earthquake resistant RC buildings. The response modification factor (R) is sensitive to many aspects such as overall ductility, over-strength, damping, and redundancy levels. Indeed, these factors are severely affected by geometric irregularity of the structural system. So, R-value does not become a constant number for the all types of structures with the same lateral load resisting system, as many standard codes noted. It depends on types, combination, and degrees of geometric vertical irregularity. This research assesses the actual values of R for regular and familiar vertical irregularity cases in RC buildings with moment-resisting frames (MRF) systems. Also, it takes into account the reduction percent that may occurs in R-value due to these studied vertical irregularities. The vertical irregularity cases, such as set-back and soft story, are essentially needed to be studied greater than ever due to the wide propagation of these types of buildings in Egypt, recently. In addition, the potential analytical methods that may be used to calculate R-value in comparison with Egyptian code’s value. Nonlinear static pushover analysis is carried out using ETABS via three-dimensional numerical models. The findings prove that vertical irregular models have poor seismic capacities, in comparison with regular one, due to their sudden change in lateral stiffness than that with regular aspect. So, the response modification factor (R) must be re-calculated or even scaled-down before design stage with 15% and 25% for single and combined vertical irregularity, respectively. In addition, this investigation derives a vital equation between R values with vertical irregularity ratios in each studied model. This equation shall be a guide for seismic design codes, structural design engineers, and researchers. Accordingly, the response modification factor R does not become a fixed value regardless vertical irregularity aspects of the buildings, but it has a variable value that depend on their inelastic seismic performance of the lateral load resisting systems.


Sign in / Sign up

Export Citation Format

Share Document