Isolation of soil-structure interaction effects by full-scale forced vibration tests

1988 ◽  
Vol 16 (1) ◽  
pp. 1-21 ◽  
Author(s):  
J. E. Luco ◽  
M. D. Trifunac ◽  
H. L. Wong
1999 ◽  
Vol 15 (3) ◽  
pp. 117-126
Author(s):  
Cheng-Hsing Chen ◽  
Shuh-Hua Yang

AbstractThis paper uses a simple model, the lumped single-degree-of-freedom system on rigid mat foundation, to investigate the effects of soil-structure interaction on the dynamic response of a soil-structure system. Based on that, the key parameters affecting the natural frequency of a soil-structure system can be easily identified and be used to assess the effects of soil-structure interaction. Accordingly, it was used to simulate the dynamic response of the forced vibration tests conducted at Hualien, Taiwan. Results obtained show that the simple model can predict the field responses very satisfactorily.


2021 ◽  
pp. 875529302098197
Author(s):  
Jason M Buenker ◽  
Scott J Brandenberg ◽  
Jonathan P Stewart

We describe two experiments performed on a 9-m-radius geotechnical centrifuge to evaluate dynamic soil–structure interaction effects on the cyclic failure potential of fine-grained soil. Each experiment incorporated three different structures with a range of mass and stiffness properties. Structures were founded on strip footings embedded in a thin layer of sand overlying lightly overconsolidated low-plasticity fine-grained soil. Shaking was applied to the base of the model container, consisting of scaled versions of recorded earthquake ground motions, sweep motions, and step waves. Data recorded during testing were processed and published on the platform DesignSafe. We describe the model configuration, sensor information, shaking events, and data processing procedures and present selected processed data to illustrate key model responses and to provide a benchmark for data use.


Sign in / Sign up

Export Citation Format

Share Document