Recovery of actinides and fission products from spent nuclear fuel via electrolytic reduction: Thematic overview

Author(s):  
Alexander Y. Galashev
2021 ◽  
Author(s):  
Xuesong Yan ◽  
Yaling Zhang ◽  
Yucui Gao ◽  
Lei Yang

Abstract To make the nuclear fuel cycle more economical and convenient, as well as prevent nuclear proliferation, the conceptual study of a simple high-temperature dry reprocessing of spent nuclear fuel (SNF) for a ceramic fast reactor is proposed in this paper. This simple high-temperature dry (HT-dry) reprocessing includes the Atomics International Reduction Oxidation (AIROX) process and purification method for rare-earth elements. After removing the part of fission products from SNF by a HT-dry reprocessing without fine separation, the remaining nuclides and some uranium are fabricated into fresh fuel which can be used back to the ceramic fast reactor. Based on the ceramic coolant fast reactor, we studied neutron physics of nuclear fuel cycle which consists operation of ceramic reactor, removing part of fission products from SNF and preparation of fresh fuels for many time. The parameters of the study include effective multiplication factor (Keff), beam density, and nuclide mass for different ways to remove the fission products from SNF. With the increase in burnup time, the trend of increasing 239Pu gradually slows down, and the trend of 235U gradually decreases and become balanced. For multiple removal of part of fission products in the nuclear fuel cycle, the higher the removal, the larger the initial Keff.


1996 ◽  
Vol 465 ◽  
Author(s):  
C. W. Forsberg

ABSTRACTA new repository waste package (WP) concept for spent nuclear fuel (SNF) is being investigated. The WP uses depleted uranium (DU) to improve performance and reduce the uncertainties of geological disposal of SNF. The WP would be loaded with SNF. Void spaces would then be filled with DU (∼0.2 wt % 235U) dioxide (UO2) or DU silicate-glass beads.Fission products and actinides can not escape the SNF UO2 crystals until the UO2 dissolves or is transformed into other chemical species. After WP failure, the DU fill material slows dissolution by three mechanisms: (1) saturation of WP groundwater with DU and suppression of SNF dissolution, (2) maintenance of chemically reducing conditions in the WP that minimize SNF solubility by sacrificial oxidation of DU from the +4 valence state, and (3) evolution of DU to lower-density hydrated uranium silicates. The fill expansion minimizes water flow in the degraded WP. The DU also isotopically exchanges with SNF uranium as the SNF degrades to reduce long-term nuclear-criticality concerns.


2004 ◽  
Vol 148 (3) ◽  
pp. 348-357 ◽  
Author(s):  
Yuichi Sano ◽  
Yoshihiko Shinoda ◽  
Masaki Ozawa

Author(s):  
Jerzy Narbutt

<p>Recycling of actinides from spent nuclear fuel by their selective separation followed by transmutation in fast reactors will optimize the use of natural uranium resources and minimize the long-term hazard from high-level nuclear waste. This paper describes solvent extraction processes recently developed, aimed at the separation of americium from lanthanide fission products as well as from curium present in the waste. Depicted are novel poly-N-heterocyclic ligands used as selective extractants of actinide ions from nitric acid solutions or as actinide-selective hydrophilic stripping agents.</p>


2011 ◽  
Vol 46 (6) ◽  
pp. S363-S369 ◽  
Author(s):  
V. Soyfer ◽  
V. Goryachev ◽  
A. Salyuk ◽  
O. Dudarev ◽  
D. Andreev ◽  
...  

Author(s):  
Yu. Pokhitonov ◽  
V. Romanovski ◽  
P. Rance

The principal purpose of spent fuel reprocessing consists in the recovery of the uranium and plutonium and the separation of fission products so as to allow re-use of fissile and fertile isotopes and facilitate disposal of waste elements. Amongst the fission products present in spent nuclear fuel of Nuclear Power Plants (NPPs,) there are considerable quantities of platinum group metals (PGMs): ruthenium, rhodium and palladium. Given current predictions for nuclear power generation, it is predicted that the quantities of palladium to be accumulated by the middle of this century will be comparable with those of the natural sources, and the quantities of rhodium in spent nuclear fuel may even exceed those in natural sources. These facts allow one to consider spent nuclear fuel generated by NPPs as a potential source for creation of a strategic stock of platinum group metals. Despite of a rather strong prediction of growth of palladium consumption, demand for “reactor” palladium in industry should not be expected because it contains a long-lived radioactive isotope 107Pd (half-life 6,5·105 years) and will thus be radioactive for a very considerable period, which, naturally, restricts its possible applications. It is presently difficult to predict all the areas for potential use of “reactor” palladium in the future, but one can envisage that the use of palladium in radwaste reprocessing technology (e.g. immobilization of iodine-129 and trans-plutonium elements) and in the hydrogen energy cycle may play a decisive role in developing the demand for this metal. Realization of platinum metals recovery operation before HLW vitrification will also have one further benefit, namely to simplify the vitrification process, because platinum group metals may in certain circumstances have adverse effects on the vitrification process. The paper will report data on platinum metals (PGM) distribution in spent fuel reprocessing products and the different alternatives of palladium separation flowsheets from HLW are presented. It is shown, that spent fuel dissolution conditions can affect the palladium distribution between solution and insoluble precipitates. The most important factors, which determine the composition and the yield of residues resulting from fuel dissolution, are the temperature and acid concentration. Apparently, a careful selection of fuel dissolution process parameters would make it possible to direct the main part of palladium to the 1st cycle raffinate together with the other fission products. In the authors’ opinion, the development of an efficient technology for palladium recovery requires the conception of a suitable flow-sheet and the choice of optimal regimes of “reactor” palladium recovery concurrently with the resolution of the problem of HLW partitioning when using the same facilities.


1996 ◽  
Vol 465 ◽  
Author(s):  
K. A. Jensen ◽  
R. C. Ewing ◽  
F. Gauthier-Lafaye

ABSTRACTUraninites from the Bangombé natural fission reactor (RZB) and “normal” uranium-ore occur as fine veins in the sandstone host-rock as well as altered, broken, and slightly displaced grains in an illitic matrix, and in nodules and veins of solid bitumen. Inclusions of galena, (Y,Gd)-rich phosphates, a Pb-oxide and a Ti-oxide? were observed. Uraninites just below RZB were partially altered to a uranyl-sulfate. Three generations of uraninite were identified based on their PbO-contents of 8–11.06 wt%, 6 wt% (the largest population), and a younger generation with 3 wt%. The high Pb-uraninites may be the precursor to the low Pb-uraninites. Diffusional loss of Pb is indicated by the presence of a Pb-oxide at the interface to the uraninites. The behaviour of the metallic fission products, incompatible with the uraninite structure, may mimic the behaviour of Pb in these uraninites. The averaged impurity-content ranges from 4.29 to 6.89 wt%, and consists mainly of SiO2, TiO2, ZrO2, FeO, CaO, Al2O3 and P2O5. The averaged content of Y2O3 and the Ln's is less than 0.78 wt% and there is a scattered positive correlation with P2O5. The content of Y + Ln's is generally highest in the uraninites from RZB. Uraninite hydration and the formation of “uranopelite/zippeite” have caused complete loss of Y and the Ln's. These elements seems also to be partially lost by weak phosphatian coffinitization. The analytical results indicate that Y and the Ln's, which are high yield fission products, may be released from uraninite during alteration in the presence of P.


Sign in / Sign up

Export Citation Format

Share Document