A Fully Coupled Surface Water Storage and Soil Water Dynamics Model for Characterizing Hydroperiod of Geographically Isolated Wetlands

2019 ◽  
Author(s):  
Junyu Qi ◽  
Xuesong Zhang ◽  
Sangchul Lee ◽  
Glenn Moglen ◽  
Ali Sadeghi ◽  
...  
1998 ◽  
Vol 37 (2) ◽  
pp. 145-161 ◽  
Author(s):  
Prit Pal Singh Lubana ◽  
N.K. Narda

2012 ◽  
Vol 9 (1) ◽  
pp. 441-483
Author(s):  
B. A. Ebel ◽  
E. S. Hinckley ◽  
D. A. Martin

Abstract. Many forested watersheds with a substantial fraction of precipitation delivered as snow have the potential for landscape disturbance by wildfire. Little is known about the immediate effects of wildfire on snowmelt and near-surface hydrologic responses, including soil-water storage. Montane systems at the rain-snow transition have soil-water dynamics that are further complicated during the snowmelt period by strong aspect controls on snowmelt and soil thawing. Here we present data and analysis from field measurements of snow hydrology and subsurface hydrologic and temperature responses during the first winter and spring after the September 2010 Fourmile Canyon Fire in Colorado, USA. Our observations of soil-water content and soil temperature show sharp contrasts in hydrologic and thermal conditions between north- and south-facing slopes. South-facing burned soils were ~1–2 °C warmer on average than north-facing burned soils and ~1.5 °C warmer than south-facing unburned soils, which affected soil thawing during the snowmelt period. Soil-water dynamics also differed by aspect: in response to soil thawing, soil-water content increased approximately one month earlier on south-facing burned slopes than on north-facing burned slopes. While aspect and wildfire affect soil-water dynamics during snowmelt, soil-water storage at the end of the snowmelt period reached the value at field capacity for each plot, suggesting that post-snowmelt unsaturated storage was not substantially influenced by aspect in wildfire-affected areas. Our data and analysis indicate that snowmelt-driven groundwater recharge may be larger in wildfire-impacted areas, especially on south-facing slopes, because of earlier soil thaw and longer durations of soil-water contents above field capacity in those areas.


2012 ◽  
Vol 16 (5) ◽  
pp. 1401-1417 ◽  
Author(s):  
B. A. Ebel ◽  
E. S. Hinckley ◽  
D. A. Martin

Abstract. Many forested watersheds with a substantial fraction of precipitation delivered as snow have the potential for landscape disturbance by wildfire. Little is known about the immediate effects of wildfire on snowmelt and near-surface hydrologic responses, including soil-water storage. Montane systems at the rain-snow transition have soil-water dynamics that are further complicated during the snowmelt period by strong aspect controls on snowmelt and soil thawing. Here we present data from field measurements of snow hydrology and subsurface hydrologic and temperature responses during the first winter and spring after the September 2010 Fourmile Canyon Fire in Colorado, USA. Our observations of soil-water content and soil temperature show sharp contrasts in hydrologic and thermal conditions between north- and south-facing slopes. South-facing burned soils were ∼1–2 °C warmer on average than north-facing burned soils and ∼1.5 °C warmer than south-facing unburned soils, which affected soil thawing during the snowmelt period. Soil-water dynamics also differed by aspect: in response to soil thawing, soil-water content increased approximately one month earlier on south-facing burned slopes than on north-facing burned slopes. While aspect and wildfire affect soil-water dynamics during snowmelt, soil-water storage at the end of the snowmelt period reached the value at field capacity for each plot, suggesting that post-snowmelt unsaturated storage was not substantially influenced by aspect in wildfire-affected areas. Our data and analysis indicate that the amount of snowmelt-driven groundwater recharge may be larger in wildfire-impacted areas, especially on south-facing slopes, because of earlier soil thaw and longer durations of soil-water contents above field capacity in those areas.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2272
Author(s):  
Zhi-Yun Jiang ◽  
Xue-Dan Wang ◽  
Si-Yi Zhang ◽  
Bin He ◽  
Xiao-Li Zhao ◽  
...  

Soil water conditions play an important role in the formation of a collapsing gully, but we are still at the early stages of understanding how the soil water changes on the slope after different rainfall events due to a lack of high-frequency continuous field observations. This study aimed to reveal the response of soil water dynamics to rainfall events for different slope aspects and positions based on continuous multi-depth observations of soil water on a typical collapsing gully slope from 2017 to 2019 in Wuhua County, Guangdong Province, China. The vegetation characteristics and soil properties were investigated, and the storage of soil water was also calculated. The results showed that the dynamics and storage of soil water varied with the slope aspect, slope position and vegetation cover. The response time of the soil water to intensive rainfall events on the sunny slope was shorter than that on the shady slope, while soil water storage in the sunny slope was significantly lower than in the shady slope (p < 0.01). For the different slope positions, the soil water response time to the intensive rainfall events on the upper slope was shorter than that in the middle slope, while the soil water storage in the middle slope was significantly higher than on the upper slope. This was mainly due to the redistribution runoff from the upper slope to middle slope, delaying the process by which rainwater infiltrated into the soil layers. Moreover, vegetation significantly allayed the response of soil water dynamics to an intensive rainfall event but increased the storage of soil water, owing to the protection of soil surface from rain and conservation of high soil clay content. The bare area in the middle position of the sunny slope was speculated to be the potential source of the collapsing gully because it lacked the cover of vegetation. Our findings highlight the importance of soil water dynamics on the formation of a collapsing gully and provided valuable insights for the optimization of soil conservation and management practices for collapsing erosion.


2021 ◽  
Author(s):  
Matteo Longo ◽  
Curtis Dinnen Jones ◽  
Roberto César Izaurralde ◽  
Miguel L. Cabrera ◽  
Nicola Dal Ferro ◽  
...  

2020 ◽  
Vol 83 ◽  
pp. 371-385 ◽  
Author(s):  
Ángel del Vigo ◽  
Sergio Zubelzu ◽  
Luis Juana

Sign in / Sign up

Export Citation Format

Share Document