snowmelt period
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 0)

Author(s):  
Karl Krainer ◽  
Gerfried Winkler ◽  
Sabine Pernreiter ◽  
Thomas Wagner

AbstractGarber Schlag (Q-GS) is one of the major springs of the Karwendel Mountains, Tyrol, Austria. This spring has a unique runoff pattern that is mainly controlled by the tectonic setting. The main aquifer is a moderately karstified and jointed limestone of the Wetterstein Formation that is underlain by nonkarstified limestone of the Reifling Formation, which acts as an aquitard. The aquifer and aquitard of the catchment of spring Q-GS form a large anticline that is bound by a major fault (aquitard) to the north. Discharge of this spring shows strong seasonal variations with three recharge origins, based on δ18O and electrical conductivity values. A clear seasonal trend is observed, caused by the continuously changing portions of water derived from snowmelt, rainfall and groundwater. At the onset of the snowmelt period in May, the discharge is composed mainly of groundwater. During the maximum snowmelt period, the water is dominantly composed of water derived from snowmelt and subordinately from rainfall. During July and August, water derived from snowmelt continuously decreases and water derived from rainfall increases. During September and October, the water released at the spring is mainly derived from groundwater and subordinately from rainfall. The distinct discharge plateau from August to December and the following recession until March is likely related to the large regional groundwater body in the fissured and moderately karstified aquifer of the Wetterstein Formation and the tectonic structures (anticline, major fault). Only a small portion of the water released at spring Q-GS is derived from permafrost.


Author(s):  
Takumi Murakami ◽  
Tatsuya Ishikawa ◽  
Nguyen Thanh Binh ◽  
Akira Mori ◽  
Seiya Yokota

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3452
Author(s):  
Ricardo Carrillo ◽  
Luca Mao

Suspended and bedload transport dynamics on rivers draining glacierized basins depend on complex processes of runoff generation together with the degree of sediment connectivity and coupling at the basin scale. This paper presents a recent dataset of sediment transport in the Estero Morales, a 27 km2 glacier-fed basin in Chile where suspended sediment concentration (SSC) and bedload (BL) fluxes have been continuously monitored during two ablation seasons (2014–2015 and 2015–1016). The relationship between discharge and SSC depends on the origin of runoff, which is higher during glacier melting, although the hysteresis index reveals that sediment sources are closer to the outlet during snowmelt. As for suspended sediment transport, bedload availability and yield depend on the origin of runoff. Bedload yield and bedload transport efficiency are higher during the glacier melting period in the first ablations season due to a high coupling to the proglacial area after the snowmelt period. Instead, on the second ablation seasons the peak of bedload yield and bedload transport efficiency occur in the snowmelt period, due to a better coupling of the lower part of the basin caused by a longer permanency of snow. Differences in volumes of transported sediments between the two seasons reveal contrasting mechanisms in the coupling dynamic of the sediment cascade, due to progressive changes of type and location of the main sources of runoff and sediments in this glacierized basin. The paper highlights the importance of studying these trends, as with retreating glaciers basins are likely producing less sediments after the “peak flow”, with long-term consequences on the ecology and geomorphology of rivers downstream.


2019 ◽  
Vol 98 (8) ◽  
pp. 186-193
Author(s):  
Yoshiaki KIMURA ◽  
Hiroki KATO ◽  
Seiichi YASUI ◽  
Kazuma OZAKI ◽  
Kunihiko YOSHIDA ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1529
Author(s):  
Oleksandr Panasiuk ◽  
Annelie Hedström ◽  
Jeroen Langeveld ◽  
Cornelis de Haan ◽  
Erik Liefting ◽  
...  

Infiltration and inflow (I/I) into sewers cause negative effects on the sewer system, wastewater treatment plant and environment. Identifying the causes and locating the inflows is necessary in order to address the I/I problem. This paper focuses on using distributed temperature sensing (DTS) for identifying, locating and characterising I/I into a sewer system during the end of winter–beginning of summer transition period under dry and wet weather conditions. During snowmelt, several locations with I/I were identified, while these locations did not show I/I during storm events after the snowmelt. In addition, during a very heavy storm after the snowmelt period, I/I was found at other locations. Therefore, DTS was demonstrated to be effective in identifying the type of I/I and in locating I/I. Finally, I/I monitoring campaigns in cold climates should take into account the variety of pathways of I/I during snowmelt and during rainfall.


2018 ◽  
Vol 10 (7) ◽  
pp. 1155 ◽  
Author(s):  
Samuel Stettner ◽  
Hugues Lantuit ◽  
Birgit Heim ◽  
Jayson Eppler ◽  
Achim Roth ◽  
...  

The timing of snowmelt is an important turning point in the seasonal cycle of small Arctic catchments. The TerraSAR-X (TSX) satellite mission is a synthetic aperture radar system (SAR) with high potential to measure the high spatiotemporal variability of snow cover extent (SCE) and fractional snow cover (FSC) on the small catchment scale. We investigate the performance of multi-polarized and multi-pass TSX X-Band SAR data in monitoring SCE and FSC in small Arctic tundra catchments of Qikiqtaruk (Herschel Island) off the Yukon Coast in the Western Canadian Arctic. We applied a threshold based segmentation on ratio images between TSX images with wet snow and a dry snow reference, and tested the performance of two different thresholds. We quantitatively compared TSX- and Landsat 8-derived SCE maps using confusion matrices and analyzed the spatiotemporal dynamics of snowmelt from 2015 to 2017 using TSX, Landsat 8 and in situ time lapse data. Our data showed that the quality of SCE maps from TSX X-Band data is strongly influenced by polarization and to a lesser degree by incidence angle. VH polarized TSX data performed best in deriving SCE when compared to Landsat 8. TSX derived SCE maps from VH polarization detected late lying snow patches that were not detected by Landsat 8. Results of a local assessment of TSX FSC against the in situ data showed that TSX FSC accurately captured the temporal dynamics of different snow melt regimes that were related to topographic characteristics of the studied catchments. Both in situ and TSX FSC showed a longer snowmelt period in a catchment with higher contributions of steep valleys and a shorter snowmelt period in a catchment with higher contributions of upland terrain. Landsat 8 had fundamental data gaps during the snowmelt period in all 3 years due to cloud cover. The results also revealed that by choosing a positive threshold of 1 dB, detection of ice layers due to diurnal temperature variations resulted in a more accurate estimation of snow cover than a negative threshold that detects wet snow alone. We find that TSX X-Band data in VH polarization performs at a comparable quality to Landsat 8 in deriving SCE maps when a positive threshold is used. We conclude that TSX data polarization can be used to accurately monitor snowmelt events at high temporal and spatial resolution, overcoming limitations of Landsat 8, which due to cloud related data gaps generally only indicated the onset and end of snowmelt.


Sign in / Sign up

Export Citation Format

Share Document