Lava flow eruption conditions in the Tharsis Volcanic Province on Mars

2021 ◽  
Author(s):  
Sean Peters ◽  
Philip Russel Christensen ◽  
Amanda B Clarke
Keyword(s):  
2019 ◽  
Vol 46 (2) ◽  
pp. 279 ◽  
Author(s):  
Mauro Ignacio Bernardi ◽  
Gustavo Walter Bertotto ◽  
Alexis Daniel Ponce ◽  
Yuji Orihashi ◽  
Hirochika Sumino

The El Puesto lava flow is located in the Payenia Volcanic Province (central-western Argentina), has a length of 70 km and is Middle Pleistocene in age (0.200±0.027 Ma). The flow shows a P-type pahoehoe structure and exhibits several inflation structures, mainly tumuli and also inflation ridges and lava rises. Lava rise pits and radial or annular clefts are common features associated with inflation structures. The gentle slope on which the flow moved (≈0.5°) allowed the lateral coalescence of lobes at the flow front and the development of an external rigid crust that insulated the liquid core. Lava tunnels are frequent and the lava tunnel named “Cueva de Halada” which is located at its medium portion is the best example of a drainage master tube which formed from the cooling of the crust around a stable inflated flow. Tumuli alignments and long inflation ridges reveal the existence of larger tunnels within the flow. Inflation structures may occur in high concentration belts that converge on a single main belt which is assigned to an anastomosed network of internal flow pathways within the main lava body. The development of inflation structures and lava tunnels require low to moderate effusion rates. An average lava supply rate of 1.8x10-4 m3/s and an inflation time of about 15 days were estimated for an average tumulus of this flow. A high and sustained supply of low viscosity lava (η’=1550 - 483 Pa s) was inferred that initially generated a sheet flow of great areal extension. The reduction in effusion rates could then allowed the development of tunnels that carried lava to the distal fronts, generating localized inflation phenomena throughout the lava flow.


2021 ◽  
pp. SP518-2020-246
Author(s):  
Vivek S. Kale ◽  
Gauri Dole ◽  
Shilpa Patil Pillai ◽  
Poushali Chatterjee ◽  
Makarand Bodas

AbstractWe review and compare morphologies from continental basaltic lavas, using examples from the Deccan Volcanic Province to compile their internal configurations, mutual associations and compare them. The mechanism of endogenous transfer of lava within an insulating (rapidly developed) crust provides an efficient mode of dispersal of the molten lava in flood basalts. The growth of the lava flow can be achieved by a single extrusion or by multiple pulses of endogenous emplacement that enable the lava to efficiently spread over large areas and thicken.We show that the morphology of a lobe manifests the response of the molten lava to several parameters (including volumetric rate of emplacement, substrate topography, viscosity, vapour loss, etc) that govern the dynamics and cooling history of basaltic lava after it starts to spread on the surface. The lateral transition from one morphology to another within lobes of a lava flow is a testimony to the interactive response of the lava dynamics and rheology to variation in the local systems in which they were emplaced. The morphologies do not evolve as rigid partitioned categories from ‘áā and pāhoehoe lava types’ but as parametric progression of interactive variations in the spreading and cooling lava.A hierarchical recognition of lobes, flows and flow fields and mapping of the morphology (and their lateral transition or continuity) combined with the stacking patterns provides the volcanological framework for a sound stratigraphic mapping of flood basalts. Such an architectural documentation of flood basalt provinces will lead to robust models of their eruptive histories.


2004 ◽  
Vol 113 (4) ◽  
pp. 819-829 ◽  
Author(s):  
Raymond A. Duraiswami ◽  
Ninad R. Bondre ◽  
Gauri Dole

2015 ◽  
Vol 293 ◽  
pp. 46-56 ◽  
Author(s):  
Mauro I. Bernardi ◽  
Gustavo W. Bertotto ◽  
Tiago L.R. Jalowitzki ◽  
Yuji Orihashi ◽  
Alexis D. Ponce

Sign in / Sign up

Export Citation Format

Share Document