effusion rates
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 9)

H-INDEX

14
(FIVE YEARS 1)

Geology ◽  
2021 ◽  
Author(s):  
Joana R.C. Voigt ◽  
Christopher W. Hamilton ◽  
Gregor Steinbrügge ◽  
Ármann Höskuldsson ◽  
Ingibjörg Jónsdottir ◽  
...  

Determining the parameters that control fissure-fed lava morphologies is critical for reconstructing the complex emplacement histories of eruptions on Earth and other planetary bodies. We used a geomorphological map of the 2014–2015 Holuhraun lava flow field, in combination with new constraints on lava emplacement chronology and two independently derived time-averaged discharge rate (TADR) data sets, to analyze correlations between lava morphology and effusion rate. Results show that lava morphologies are dominantly controlled by effusion rate at the vent during the early phases of the eruption and by lava transport processes as the system evolves. Initially, TADR and its variance, which reflect pulsation in the lava supply rate from the vent, directly affect lava emplacement styles. However, as the eruption progresses, the lava transport system exerts a stronger control with channels and ponds that can either dampen variation in local effusion rate or create surges during sudden drainage events. The Holuhraun eruption predominantly produced rubbly lava in its earlier eruption phases and transitioned into the production of spiny lava toward the end of the eruption. However, a drop of TADR during the first phase of the eruption correlates with a decrease in rubbly lava formation and an increase in spiny lava production. This suggests that a change in effusion rate caused the observed transition in lava type. Our findings show that rubbly lava is formed under relatively high local effusion rates with pulsating supply conditions, whereas spiny lava is formed under lower local effusion rates and steadier supply.


2021 ◽  
Author(s):  
Joana R. C. Voigt ◽  
et al.

Details about previous established links between emplacement conditions and lava types, data and methods, additional correlation results, and limitations.<br>


2021 ◽  
Author(s):  
Joana R. C. Voigt ◽  
et al.

Details about previous established links between emplacement conditions and lava types, data and methods, additional correlation results, and limitations.<br>


2021 ◽  
Vol 13 (5) ◽  
pp. 845
Author(s):  
Yuchao Chen ◽  
Qian Huang ◽  
Jiannan Zhao ◽  
Xiangyun Hu

Lunar volcanic domes are essential windows into the local magmatic activities on the Moon. Classification of domes is a useful way to figure out the relationship between dome appearances and formation processes. Previous studies of dome classification were manually or semi-automatically carried out either qualitatively or quantitively. We applied an unsupervised machine-learning method to domes that are annularly or radially distributed around Gardner, a unique central-vent volcano located in the northern part of the Mare Tranquillitatis. High-resolution lunar imaging and spectral data were used to extract morphometric and spectral properties of domes in both the Gardner volcano and its surrounding region in the Mare Tranquillitatis. An integrated robust Fuzzy C-Means clustering algorithm was performed on 120 combinations of five morphometric (diameter, area, height, surface volume, and slope) and two elemental features (FeO and TiO2 contents) to find the optimum combination. Rheological features of domes and their dike formation parameters were calculated for dome-forming lava explanations. Results show that diameter, area, surface volume, and slope are the selected optimum features for dome clustering. 54 studied domes can be grouped into four dome clusters (DC1 to DC4). DC1 domes are relatively small, steep, and close to the Gardner volcano, with forming lavas of high viscosities and low effusion rates, representing the latest Eratosthenian dome formation stage of the Gardner volcano. Domes of DC2 to DC4 are relatively large, smooth, and widely distributed, with forming lavas of low viscosities and high effusion rates, representing magmatic activities varying from Imbrian to Eratosthenian in the northern Mare Tranquillitatis. The integrated algorithm provides a new and independent way to figure out the representative properties of lunar domes and helps us further clarify the relationship between dome clusters and local magma activities of the Moon.


2020 ◽  
Vol 8 ◽  
Author(s):  
Charline Lormand ◽  
Andrew J. L. Harris ◽  
Magdalena Oryaëlle Chevrel ◽  
Sonia Calvari ◽  
Lucia Gurioli ◽  
...  

Low elevation flank eruptions represent highly hazardous events due to their location near, or in, communities. Their potentially high effusion rates can feed fast moving lava flows that enter populated areas with little time for warning or evacuation, as was the case at Nyiragongo in 1977. The January–March 1974 eruption on the western flank of Mount Etna, Italy, was a low elevation effusive event, but with low effusion rates. It consisted of two eruptive phases, separated by 23 days of quiescence, and produced two lava flow fields. We describe the different properties of the two lava flow fields through structural and morphological analyses using UAV-based photogrammetry, plus textural and rheological analyses of samples. Phase I produced lower density (∼2,210 kg m−3) and crystallinity (∼37%) lavas at higher eruption temperatures (∼1,080°C), forming thinner (2–3 m) flow units with less-well-developed channels than Phase II. Although Phase II involved an identical source magma, it had higher densities (∼2,425 kg m−3) and crystallinities (∼40%), and lower eruption temperatures (∼1,030°C), forming thicker (5 m) flow units with well-formed channels. These contrasting properties were associated with distinct rheologies, Phase I lavas having lower viscosities (∼103 Pa s) than Phase II (∼105 Pa s). Effusion rates were higher during Phase I (≥5 m3/s), but the episodic, short-lived nature of each lava flow emplacement event meant that flows were volume-limited and short (≤1.5 km). Phase II effusion rates were lower (≤4 m3/s), but sustained effusion led to flow units that could still extend 1.3 km, although volume limits resulted from levee failure and flow avulsion to form new channels high in the lava flow system. We present a petrologically-based model whereby a similar magma fed both phases, but slower ascent during Phase II may have led to greater degrees of degassing resulting in higher cooling-induced densities and crystallinities, as well as lower temperatures. We thus define a low effusion rate end-member scenario for low elevation effusive events, revealing that such events are not necessarily of high effusion rate and velocity, as in the catastrophic event scenarios of Etna 1669 or Kilauea 2018.


2019 ◽  
Vol 46 (2) ◽  
pp. 279 ◽  
Author(s):  
Mauro Ignacio Bernardi ◽  
Gustavo Walter Bertotto ◽  
Alexis Daniel Ponce ◽  
Yuji Orihashi ◽  
Hirochika Sumino

The El Puesto lava flow is located in the Payenia Volcanic Province (central-western Argentina), has a length of 70 km and is Middle Pleistocene in age (0.200±0.027 Ma). The flow shows a P-type pahoehoe structure and exhibits several inflation structures, mainly tumuli and also inflation ridges and lava rises. Lava rise pits and radial or annular clefts are common features associated with inflation structures. The gentle slope on which the flow moved (≈0.5°) allowed the lateral coalescence of lobes at the flow front and the development of an external rigid crust that insulated the liquid core. Lava tunnels are frequent and the lava tunnel named “Cueva de Halada” which is located at its medium portion is the best example of a drainage master tube which formed from the cooling of the crust around a stable inflated flow. Tumuli alignments and long inflation ridges reveal the existence of larger tunnels within the flow. Inflation structures may occur in high concentration belts that converge on a single main belt which is assigned to an anastomosed network of internal flow pathways within the main lava body. The development of inflation structures and lava tunnels require low to moderate effusion rates. An average lava supply rate of 1.8x10-4 m3/s and an inflation time of about 15 days were estimated for an average tumulus of this flow. A high and sustained supply of low viscosity lava (η’=1550 - 483 Pa s) was inferred that initially generated a sheet flow of great areal extension. The reduction in effusion rates could then allowed the development of tunnels that carried lava to the distal fronts, generating localized inflation phenomena throughout the lava flow.


Sign in / Sign up

Export Citation Format

Share Document