Ensemble Generation For Hurricane Hazard Assessment Along The United States' Atlantic Coast

2021 ◽  
Author(s):  
Abolfazl Hojjat Ansari ◽  
Mohammad Ali Olyaei ◽  
Zahra Heydari

<em>Abstract.</em>—Because of their tendency to accumulate in estuaries and coastal regions, organochlorine (OC) contaminants such as pesticides and polychlorinated biphenyls (PCBs) represent potential threats to the quality of essential fish habitat for many shark species. These compounds pose special risks to immature sharks in particular because of their ability to impair growth and sexual maturation in juvenile fish at environmentally relevant levels of exposure. In order to assess the extent of these risks in shark populations on the East Coast of the United States, the present study examined concentrations of 30 OC pesticides/pesticide metabolites and total PCBs in juvenile sandbar <em>Carcharhinus plumbeus </em>and blacktip <em>C. limbatus </em>sharks from seven major nursery areas in the western Atlantic Ocean and eastern Gulf of Mexico. Quantifiable levels of PCBs and 13 OC pesticides/ pesticide metabolites were detected via gas chromatography and mass spectrometry in liver of 25 young-of-the-year blacktip sharks from the southeastern U.S. Atlantic coast and three regions on Florida’s gulf coast: Cedar Key, Tampa Bay, and Charlotte Harbor. Similarly, quantifiable levels of PCBs and 14 OC pesticides/metabolites were detected in 23 juvenile <em>C. plumbeus </em>from three sites on the northeastern U.S. coast: middle Delaware Bay, lower Chesapeake Bay, and Virginia’s eastern shore. Liver OC concentrations in Atlantic sandbar and blacktip sharks were higher than expected and, in some cases, comparable with elevated levels observed in deep-sea and pelagic sharks. Although significantly lower than those observed in Atlantic sharks, pesticide and PCB levels in Florida blacktip sharks were similar to, if not greater than, OC concentrations reported in adults of other coastal shark species. Based on these data, OC contamination appears to pose significant threats to habitat quality in sandbar and blacktip shark nursery areas on the U.S. Atlantic coast.


2013 ◽  
Vol 4 (1) ◽  
pp. 178-198 ◽  
Author(s):  
E. D. Silverman ◽  
D. T. Saalfeld ◽  
J. B. Leirness ◽  
M. D. Koneff

Abstract Although monitoring data for sea ducks (Tribe Mergini) are limited, current evidence suggests that four of the most common species wintering along the eastern coast of the United States—long-tailed duck Clangula hyemalis, white-winged scoter Melanitta fusca, surf scoter Melanitta perspicillata, and black scoter Melanitta americana—may be declining, while the status of American common eider Somateria mollissima dresseri is uncertain. The apparent negative trends, combined with the fact that sea duck life histories are among the most poorly documented of North American waterfowl, have led to concerns for these species and questions about the impacts of human activities, such as hunting, as well as catastrophic events and environmental change. During winter, thousands of sea ducks are found along the U.S. Atlantic coast, where they may be affected by proposed wind-power development, changes to marine traffic, aquaculture practices, sand mining, and other coastal development. Possible impacts are difficult to quantify because traditional winter waterfowl surveys do not cover many of the marine habitats used by sea ducks. Thus, the U.S. Fish and Wildlife Service conducted an experimental survey of sea ducks from 2008 to 2011 to characterize their winter distributions along the U.S. Atlantic coast. Each year, data were collected on 11 species of sea ducks on &gt;200 transects, stretching from Maine to Florida. In this paper, we describe distribution of common eider, long-tailed duck, white-winged scoter, surf scoter, and black scoter. Densities of the two species with the most northerly distribution, white-winged scoter and common eider, were highest near Cape Cod and Nantucket. Long-tailed duck was most abundant around Cape Cod, Nantucket Shoals, and in Chesapeake Bay. Surf scoter also concentrated within Chesapeake Bay; however, they were additionally found in high densities in Delaware Bay, and along the Maryland–Delaware outer coast. Black scoter, the most widely distributed species, occurred at high densities along the South Carolina coast and the mouth of Chesapeake Bay. Spatial patterns of high-density transects were consistent among years for all species except black scoter, which exhibited the most interannual variation in distribution. The distance from land, depth, and bottom slope where flocks were observed varied among species and regions, with a median distance of 3.8 km from land along the coastal transects and 75% of flocks observed over depths of &lt;16 m. Common eider and long-tailed duck were observed closer to shore and over steeper ocean bottoms than were the three scoter species. Our results represent the first large-scale quantitative description of winter sea duck distribution along the U.S. Atlantic coast, and should guide the development of sea duck monitoring programs and aid the assessment of potential impacts of ongoing and proposed offshore development.


1999 ◽  
Vol 104 (D2) ◽  
pp. 2239-2251 ◽  
Author(s):  
Robert A. Kotchenruther ◽  
Peter V. Hobbs ◽  
Dean A. Hegg

Sign in / Sign up

Export Citation Format

Share Document