Potential megathrust co-seismic slip during the 2020 Sand Point, Alaska strike-slip earthquake

2021 ◽  
Author(s):  
Sean R Santellanes ◽  
Diego Melgar ◽  
Brendan W Crowell ◽  
Jiun-Ting Lin
Keyword(s):  
2020 ◽  
Vol 3 (2) ◽  
pp. 781-790
Author(s):  
M. Rizwan Akram ◽  
Ali Yesilyurt ◽  
A.Can. Zulfikar ◽  
F. Göktepe

Research on buried gas pipelines (BGPs) has taken an important consideration due to their failures in recent earthquakes. In permanent ground deformation (PGD) hazards, seismic faults are considered as one of the major causes of BGPs failure due to accumulation of impermissible tensile strains. In current research, four steel pipes such as X-42, X-52, X-60, and X-70 grades crossing through strike-slip, normal and reverse seismic faults have been investigated. Firstly, failure of BGPs due to change in soil-pipe parameters have been analyzed. Later, effects of seismic fault parameters such as change in dip angle and angle between pipe and fault plane are evaluated. Additionally, effects due to changing pipe class levels are also examined. The results of current study reveal that BGPs can resist until earthquake moment magnitude of 7.0 but fails above this limit under the assumed geotechnical properties of current study. In addition, strike-slip fault can trigger early damage in BGPs than normal and reverse faults. In the last stage, an early warning system is proposed based on the current procedure. 


2020 ◽  
Vol 57 (1) ◽  
pp. 21-40
Author(s):  
Alexandra Wallenberg ◽  
Michelle Dafov ◽  
David Malone ◽  
John Craddock

A harzburgite intrusion, which is part of the trailside mafic complex) intrudes ~2900-2950 Ma gneisses in the hanging wall of the Laramide Bighorn uplift west of Buffalo, Wyoming. The harzburgite is composed of pristine orthopyroxene (bronzite), clinopyroxene, serpentine after olivine and accessory magnetite-serpentinite seams, and strike-slip striated shear zones. The harzburgite is crosscut by a hydrothermally altered wehrlite dike (N20°E, 90°, 1 meter wide) with no zircons recovered. Zircons from the harzburgite reveal two ages: 1) a younger set that has a concordia upper intercept age of 2908±6 Ma and a weighted mean age of 2909.5±6.1 Ma; and 2) an older set that has a concordia upper intercept age of 2934.1±8.9 Ma and a weighted mean age 2940.5±5.8 Ma. Anisotropy of magnetic susceptibility (AMS) was used as a proxy for magmatic intrusion and the harzburgite preserves a sub-horizontal Kmax fabric (n=18) suggesting lateral intrusion. Alternating Field (AF) demagnetization for the harzburgite yielded a paleopole of 177.7 longitude, -14.4 latitude. The AF paleopole for the wehrlite dike has a vertical (90°) inclination suggesting intrusion at high latitude. The wehrlite dike preserves a Kmax fabric (n=19) that plots along the great circle of the dike and is difficult to interpret. The harzburgite has a two-component magnetization preserved that indicates a younger Cretaceous chemical overprint that may indicate a 90° clockwise vertical axis rotation of the Clear Creek thrust hanging wall, a range-bounding east-directed thrust fault that accommodated uplift of Bighorn Mountains during the Eocene Laramide Orogeny.


2016 ◽  
Vol 72 (12) ◽  
Author(s):  
Dinesh Kumar Madan ◽  
Poonam Arya ◽  
N. R. Garg

2017 ◽  
Author(s):  
Eben Blake Hodgin ◽  
◽  
James L. Crowley ◽  
Victor Carlotto ◽  
Francis A. Macdonald
Keyword(s):  

2017 ◽  
Author(s):  
Sarah A. Harbert ◽  
◽  
Alison R. Duvall ◽  
Gregory E. Tucker

Sign in / Sign up

Export Citation Format

Share Document