scholarly journals Particle Energization in Space Plasmas: Towards a Multi-Point, Multi-Scale Plasma Observatory

2021 ◽  
Author(s):  
Alessandro Retino ◽  
Yuri Khotyaintsev ◽  
Olivier Le Contel ◽  
Maria Federica Marcucci ◽  
Ferdinand Plaschke ◽  
...  
Author(s):  
Alessandro Retinò ◽  
Yuri Khotyaintsev ◽  
Olivier Le Contel ◽  
Maria Federica Marcucci ◽  
Ferdinand Plaschke ◽  
...  

AbstractThis White Paper outlines the importance of addressing the fundamental science theme “How are charged particles energized in space plasmas” through a future ESA mission. The White Paper presents five compelling science questions related to particle energization by shocks, reconnection, waves and turbulence, jets and their combinations. Answering these questions requires resolving scale coupling, nonlinearity, and nonstationarity, which cannot be done with existing multi-point observations. In situ measurements from a multi-point, multi-scale L-class Plasma Observatory consisting of at least seven spacecraft covering fluid, ion, and electron scales are needed. The Plasma Observatory will enable a paradigm shift in our comprehension of particle energization and space plasma physics in general, with a very important impact on solar and astrophysical plasmas. It will be the next logical step following Cluster, THEMIS, and MMS for the very large and active European space plasmas community. Being one of the cornerstone missions of the future ESA Voyage 2050 science programme, it would further strengthen the European scientific and technical leadership in this important field.


2021 ◽  
Author(s):  
Kristopher Klein ◽  
Harlan Spence ◽  

<p>There are many fundamental questions about the temporal and spatial structure of turbulence in space plasmas. Answering these questions is complicated by the multi-scale nature of the turbulent transfer of mass, momentum, and energy, with characteristic scales spanning many orders of magnitude. The solar wind is an ideal environment in which to measure turbulence, but multi-point observations with spacecraft separations spanning these scales are needed to simultaneously characterize structure and cross-scale couplings. In this work, we use synthetic multi-point spacecraft data extracted from numerical simulations to demonstrate the utility of multi-point, multi-scale measurements, in preparation for data from future multi-spacecraft observatories. We use the baseline orbit design for the HelioSwarm mission concept to explore the effects of different inter-spacecraft separations and geometries on the accuracy of reconstructed magnetic fields, cascade rates, and correlation functions using well-established analysis techniques.</p>


2008 ◽  
Vol 23 (3) ◽  
pp. 1001-1015 ◽  
Author(s):  
Steven J. Schwartz ◽  
◽  
Timothy Horbury ◽  
Christopher Owen ◽  
Wolfgang Baumjohann ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Adriana Settino ◽  
Denise Perrone ◽  
Yuri V. Khotyaintsev ◽  
Daniel B. Graham ◽  
Oreste Pezzi ◽  
...  

<p>Kelvin-Helmholtz instability is a widespread phenomenon in space plasmas, such as at the planetary magnetospheres. During its nonlinear phase, the generation of Kelvin-Helmholtz vortices takes place. The identification of such coherent structures is not straightforward in observational data contrary to numerical simulations where both temporal evolution and spatial behavior can be observed. Recently, a comparison between a hybrid Vlasov-Maxwell simulation and Magnetospheric Multi-Scale satellites observation of a Kelvin-Helmholtz event has shown the presence of kinetic features that can uniquely characterize the boundaries of Kelvin-Helmholtz vortices.  Indeed, a strong total current density has been observed in correspondence of the edges of each vortex associated with a weakly distorted distribution function from the equilibrium distribution; while the opposite occurs inside the vortex region. Moreover, a new tool has been proposed to distinguish the different phases of the Kelvin-Helmholtz instability and to identify the trajectory of the spacecraft across the vortex itself. Such a tool takes into consideration the mixing degree between the magnetospheric-like and magnetosheath-like particles population in the Earth environment. The clear identification of a vortex in <em>in situ</em> data is an important achievement since it can provide a better understanding of the role that Kelvin-Helmholtz instability plays in weakly collisional space plasmas in the contest of energy dissipation.</p><p>This work has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement no. 776262 (AIDA,).</p>


2016 ◽  
Vol 136 (8) ◽  
pp. 1078-1084
Author(s):  
Shoichi Takei ◽  
Shuichi Akizuki ◽  
Manabu Hashimoto

Sign in / Sign up

Export Citation Format

Share Document