scholarly journals Validation of Ocean Model Predictions of Mean Dynamic Topography in Shallow, Tidally Dominated Regions Using Observations of Overtides

2021 ◽  
Author(s):  
Christoph Renkl ◽  
Keith Richard Thompson
Author(s):  
Per Knudsen ◽  
Ole B. Andersen ◽  
René Forsberg ◽  
Henning P. Föh ◽  
Arne V. Olesen ◽  
...  

Author(s):  
Rory J Bingham ◽  
Keith Haines

Knowledge of the ocean dynamic topography, defined as the height of the sea surface above its rest-state (the geoid), would allow oceanographers to study the absolute circulation of the ocean and determine the associated geostrophic surface currents that help to regulate the Earth's climate. Here a novel approach to computing a mean dynamic topography (MDT), together with an error field, is presented for the northern North Atlantic. The method uses an ensemble of MDTs, each of which has been produced by the assimilation of hydrographic data into a numerical ocean model, to form a composite MDT, and uses the spread within the ensemble as a measure of the error on this MDT. The r.m.s. error for the composite MDT is 3.2 cm, and for the associated geostrophic currents the r.m.s. error is 2.5 cm s −1 . Taylor diagrams are used to compare the composite MDT with several MDTs produced by a variety of alternative methods. Of these, the composite MDT is found to agree remarkably well with an MDT based on the GRACE geoid GGM01C. It is shown how the composite MDT and its error field are useful validation products against which other MDTs and their error fields can be compared.


2019 ◽  
Vol 9 (1) ◽  
pp. 154-173
Author(s):  
I. Mintourakis ◽  
G. Panou ◽  
D. Paradissis

Abstract Precise knowledge of the oceanic Mean Dynamic Topography (MDT) is crucial for a number of geodetic applications, such as vertical datum unification and marine geoid modelling. The lack of gravity surveys over many regions of the Greek seas and the incapacity of the space borne gradiometry/gravity missions to resolve the small and medium wavelengths of the geoid led to the investigation of the oceanographic approach for computing the MDT. We compute two new regional MDT surfaces after averaging, for given epochs, the periodic gridded solutions of the Dynamic Ocean Topography (DOT) provided by two ocean circulation models. These newly developed regional MDT surfaces are compared to three state-of-theart models, which represent the oceanographic, the geodetic and the mixed oceanographic/geodetic approaches in the implementation of the MDT, respectively. Based on these comparisons, we discuss the differences between the three approaches for the case study area and we present some valuable findings regarding the computation of the regional MDT. Furthermore, in order to have an estimate of the precision of the oceanographic approach, we apply extensive evaluation tests on the ability of the two regional ocean circulation models to track the sea level variations by comparing their solutions to tide gauge records and satellite altimetry Sea Level Anomalies (SLA) data. The overall findings support the claim that, for the computation of the MDT surface due to the lack of geodetic data and to limitations of the Global Geopotential Models (GGMs) in the case study area, the oceanographic approach is preferable over the geodetic or the mixed oceano-graphic/geodetic approaches.


2021 ◽  
Vol 11 (11) ◽  
pp. 5286
Author(s):  
Yihao Wu ◽  
Jia Huang ◽  
Hongkai Shi ◽  
Xiufeng He

Mean dynamic topography (MDT) is crucial for research in oceanography and climatology. The optimal interpolation method (OIM) is applied to MDT modeling, where the error variance–covariance information of the observations is established. The global geopotential model (GGM) derived from GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) gravity data and the mean sea surface model derived from satellite altimetry data are combined to construct MDT. Numerical experiments in the Kuroshio over Japan show that the use of recently released GOCE-derived GGM derives a better MDT compared to the previous models. The MDT solution computed based on the sixth-generation model illustrates a lower level of root mean square error (77.0 mm) compared with the ocean reanalysis data, which is 2.4 mm (5.4 mm) smaller than that derived from the fifth-generation (fourth-generation) model. This illustrates that the accumulation of GOCE data and updated data preprocessing methods can be beneficial for MDT recovery. Moreover, the results show that the OIM outperforms the Gaussian filtering approach, where the geostrophic velocity derived from the OIM method has a smaller misfit against the buoy data, by a magnitude of 10 mm/s (17 mm/s) when the zonal (meridional) component is validated. This is mainly due to the error information of input data being used in the optimal interpolation method, which may obtain more reasonable weights of observations than the Gaussian filtering method.


2012 ◽  
Vol 60 (1) ◽  
pp. 41-48
Author(s):  
Alexandre Bernardino Lopes ◽  
Joseph Harari

The use of geoid models to estimate the Mean Dynamic Topography was stimulated with the launching of the GRACE satellite system, since its models present unprecedented precision and space-time resolution. In the present study, besides the DNSC08 mean sea level model, the following geoid models were used with the objective of computing the MDTs: EGM96, EIGEN-5C and EGM2008. In the method adopted, geostrophic currents for the South Atlantic were computed based on the MDTs. In this study it was found that the degree and order of the geoid models affect the determination of TDM and currents directly. The presence of noise in the MDT requires the use of efficient filtering techniques, such as the filter based on Singular Spectrum Analysis, which presents significant advantages in relation to conventional filters. Geostrophic currents resulting from geoid models were compared with the HYCOM hydrodynamic numerical model. In conclusion, results show that MDTs and respective geostrophic currents calculated with EIGEN-5C and EGM2008 models are similar to the results of the numerical model, especially regarding the main large scale features such as boundary currents and the retroflection at the Brazil-Malvinas Confluence.


2017 ◽  
Vol 11 (2) ◽  
pp. 026017 ◽  
Author(s):  
Isaac Chidi Abazu ◽  
Ami Hassan Md Din ◽  
Kamaludin Mohd Omar

2018 ◽  
Vol 41 (6) ◽  
pp. 517-545 ◽  
Author(s):  
Ole Baltazar Andersen ◽  
Karina Nielsen ◽  
Per Knudsen ◽  
Chris W. Hughes ◽  
Rory Bingham ◽  
...  

2012 ◽  
Vol 42 (6) ◽  
pp. 1039-1044 ◽  
Author(s):  
Andy Pickering ◽  
Matthew H. Alford

Abstract Observations are reported of the semidiurnal (M2) internal tide across Kaena Ridge, Hawaii. Horizontal velocity in the upper 1000–1500 m was measured during eleven ~240-km-long shipboard acoustic Doppler current profiler (ADCP) transects across the ridge, made over the course of several months. The M2 motions are isolated by means of harmonic analysis and compared to numerical simulations using the Princeton Ocean Model (POM). The depth coverage of the measurements is about 3 times greater than similar past studies, offering a substantially richer view of the internal tide beams. Sloping features are seen extending upward north and south from the ridge and then downward from the surface reflection about ±40 km from the ridge crest, closely matching theoretical M2 ray paths and the model predictions.


Sign in / Sign up

Export Citation Format

Share Document