geopotential model
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 31)

H-INDEX

11
(FIVE YEARS 1)

2022 ◽  
Vol 9 ◽  
Author(s):  
Hamad Al-Ajami ◽  
Ahmed Zaki ◽  
Mostafa Rabah ◽  
Mohamed El-Ashquer

A new gravimetric geoid model, the KW-FLGM2021, is developed for Kuwait in this study. This new geoid model is driven by a combination of the XGM2019e-combined global geopotential model (GGM), terrestrial gravity, and the SRTM 3 global digital elevation model with a spatial resolution of three arc seconds. The KW-FLGM2021 has been computed by using the technique of Least Squares Collocation (LSC) with Remove-Compute-Restore (RCR) procedure. To evaluate the external accuracy of the KW-FLGM2021 gravimetric geoid model, GPS/leveling data were used. As a result of this evaluation, the residual of geoid heights obtained from the KW-FLGM2021 geoid model is 2.2 cm. The KW-FLGM2021 is possible to be recommended as the first accurate geoid model for Kuwait.


2022 ◽  
Vol 14 (1) ◽  
pp. 240
Author(s):  
Yihao Wu ◽  
Jia Huang ◽  
Xiufeng He ◽  
Zhicai Luo ◽  
Haihong Wang

MDT recovery over coastal regions is challenging, as the mean sea surface (MSS) and geoid/quasi-geoid models are of low quality. The altimetry satellites equipped with the synthetic aperture radar (SAR) altimeters provide more accurate sea surface heights than traditional ones close to the coast. We investigate the role of using the SAR-based MSS in coastal MDT recovery, and the effects introduced by the SAR altimetry data are quantified and assessed. We model MDTs based on the multivariate objective analysis, where the MSS and the recently released satellite-only global geopotential model are combined. The numerical experiments over the coast of Japan and southeastern China show that the use of the SAR-based MSS improves the local MDT. The root mean square (RMS) of the misfits between MDT-modeled with SAR altimetry data and the ocean data is lower than that derived from MDT computed without SAR data—by a magnitude of 4–8 mm. Moreover, the geostrophic velocities derived from MDT modeled with the SAR altimetry data have better fits with buoy data than those derived from MDT modeled without SAR data. In total, our studies highlight the use of SAR altimetry data in coastal MDT recovery.


2021 ◽  
Vol 10 (12) ◽  
pp. 819
Author(s):  
Norberto Alcantar-Elizondo ◽  
Ramon Victorino Garcia-Lopez ◽  
Xochitl Guadalupe Torres-Carillo ◽  
Guadalupe Esteban Vazquez-Becerra

This work shows improvements of geoid undulation values obtained from a high-resolution Global Geopotential Model (GGM), applied to local urban areas. The methodology employed made use of a Residual Terrain Model (RTM) to account for the topographic masses effect on the geoid. This effect was computed applying the spherical tesseroids approach for mass discretization. The required numerical integration was performed by 2-D integration with 1DFFT technique that combines DFT along parallels with direct numerical integration along meridians. In order to eliminate the GGM commission error, independent geoid undulations values obtained from a set of GNSS/leveling stations are employed. A corrector surface from the associated geoid undulation differences at the stations was generated through a polynomial regression model. The corrector surface, in addition to the GGM commission error, also absorbs the GNSS/leveling errors as well as datum inconsistencies and systematic errors of the data. The procedure was applied to five Mexican urban areas that have a geodetic network of GNSS/leveling points, which range from 166 to 811. Two GGM were evaluated: EGM2008 and XGM2019e_2159. EGM2008 was the model that showed relatively better agreement with the GNSS/leveling stations having differences with RMSE values in the range of 8–60 cm and standard deviations of 5–8 cm in four of the networks and 17 cm in one of them. The computed topographic masses contribution to the geoid were relatively small, having standard deviations on the range 1–24 mm. With respect to corrector surface estimations, they turned out to be fairly smooth yielding similar residuals values for two geoid models. This was also the case for the most recent Mexican gravity geoid GGM10. For the three geoid models, the second order polynomial regression model performed slightly better than the first order with differences up to 1 cm. These two models produced geoid correction residuals with a standard deviation in one test area of 14 cm while for the others it was of about 4–7 cm. However, the kriging method that was applied for comparison purposes produced slightly smaller values: 8 cm for one area and 4–6 cm for the others.


2021 ◽  
Vol 936 (1) ◽  
pp. 012034
Author(s):  
Hamidatul Aminah ◽  
Ira Mutiara Anjasmara

Abstract Geoid model was chosen as a vertical reference in Indonesia based on the Head of the Geospatial Information Agency Regulation (Perka BIG) No. 15 of 2013 concerning the Indonesian Geospatial Reference System (SRGI2013). Therefore, the development of local geoid models continues to be carried out to obtain good accuracy. The geoid is formed through three main components: long wave, short wave, and medium wave. One of the longwave components is the global geopotential model obtained from topographic, terrestrial, altimetry, and gravity satellite data. Along with the development of technology and gravity observation methods, the global model has many variations, so it is necessary to determine the global model that is most suitable for the geographical conditions in Indonesia. EGM2008 is often used in local geoid modeling in Indonesia based on research that compares several global models. Still, it does not rule out the possibility of a new global model that is more suitable for Indonesia.


2021 ◽  
Vol 873 (1) ◽  
pp. 012045
Author(s):  
D Ramdani ◽  
A N Safi’i ◽  
P Hartanto ◽  
N Oktaviani ◽  
M I Hariyono

Abstract To use the Global Navigation Satellite System (GNSS) correctly, the height information should be transformed into orthometric height by subtracting geoid undulation from it. This orthometric height is commonly used for practical purposes. In 2015 geoid of Jakarta has been produced, and it has an accuracy of 0.076 m. In the year 2019, airborne gravimetry has been done for the entire Java Island. The area of DKI Province cannot be measured because there is inhibition from Airnav. For this reason, terrestrial gravimetric measurements are carried out in this region by adding points outside the previously measured area. To compute the geoid in the Jakarta region is needed the Global Geopotential Model (GGM). In this paper, the GMM used is gif48. The “remove and restore” method will be used in calculating the geoid in this Jakarta region. Besides that in this geoid calculation also uses Stokes kernel and FFT to speed up the calculation. The verification of the resulting geoid is carried with 11 points in DKI Jakarta Province. This verification produces a standard deviation of 0.116 m and a root mean square of 0.411 m.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yihao Wu ◽  
Xiufeng He ◽  
Zhicai Luo ◽  
Hongkai Shi

The development of the global geopotential model (GGM) broadens its applications in ocean science, which emphasizes the importance for model assessment. We assess the recently released high-degree GGMs over the South China Sea through heterogeneous geodetic observations and synthetic/ocean reanalysis data. The comparisons with a high resolution (∼3 km) airborne gravimetric survey over the Paracel Islands show that XGM2019e_2159 has relatively high quality, where the standard deviation (SD) of the misfits against the airborne gravity data is ∼3.1 mGal. However, the comparisons with local airborne/shipborne gravity data hardly discriminate the qualities of other GGMs that have or truncated to the same expansion degree. Whereas, the comparisons with the synthetic/ocean reanalysis data demonstrate that the qualities of the values derived from different GGMs are not identical, and the ones derived from XGM2019e_2159 have better performances. The SD of the misfits between the mean dynamic topography (MDT) derived from XGM2019e_2159 and the ocean data is 2.5 cm; and this value changes to 7.1 cm/s (6.8 cm/s) when the associated zonal (meridian) geostrophic velocities are assessed. In contrast, the values derived from the other GGMs show deteriorated qualities compared to those derived from XGM2019e_2159. In particular, the contents computed from the widely used EGM2008 have relatively poor qualities, which is reduced by 3.9 cm when the MDT is assessed, and by 4.0 cm/s (5.5 cm/s) when the zonal (meridian) velocities are assessed, compared to the results derived from XGM2019e_2159. The results suggest that the choice of a GGM in oceanographic study is crucial, especially over coastal zones. Moreover, the synthetic/ocean data sets may be served as additional data sources for global/regional gravity field assessment, which are useful in regions that lack of high-quality geodetic data.


Author(s):  
Nur Sofia Erina Ariff ◽  
Adolfientje Kasenda Olesen ◽  
Norehan Md Yaacob ◽  
Saiful Aman Hj Sulaiman

Author(s):  
Shuib Rambat ◽  
◽  
Nazirah Mohamad Abdullah ◽  
Norehan Yaacob ◽  
Nor’ Azizi Othman ◽  
...  

Gravity anomalies can yield an indirect but extremely useful picture of lateral changes in rock composition and structural patterns especially for rapid development area such as Johor region. The gravity anomalies can be derived from Global Geopotential Model (GGM) which is one of special product from the satellite technology that able to determine high accuracy of the earth’s gravity field. In this study, the gravity anomalies derived from recent GGM published by International Global Geopotential Model were compared with five other GGMs model that compromised either terrestrial or airborne or both to derive the gravity anomalies. In order to identify the best gravity model over the Johor region, two types of GGM class model has been selected for the comparisons which known as satellite only and combined class model. The result shows that the gravity anomalies de-rived from satellite only class model with up 300 spherical harmonic coefficients is the best fit model and can be used as a reference for the Johor region. The RSME for the recent GGM via satellite only were +/- 5.865 and +/- 3.347 mGal for terrestrial and airborne gravity anomalies respectively compared to other GGM.


2021 ◽  
Vol 11 (11) ◽  
pp. 5286
Author(s):  
Yihao Wu ◽  
Jia Huang ◽  
Hongkai Shi ◽  
Xiufeng He

Mean dynamic topography (MDT) is crucial for research in oceanography and climatology. The optimal interpolation method (OIM) is applied to MDT modeling, where the error variance–covariance information of the observations is established. The global geopotential model (GGM) derived from GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) gravity data and the mean sea surface model derived from satellite altimetry data are combined to construct MDT. Numerical experiments in the Kuroshio over Japan show that the use of recently released GOCE-derived GGM derives a better MDT compared to the previous models. The MDT solution computed based on the sixth-generation model illustrates a lower level of root mean square error (77.0 mm) compared with the ocean reanalysis data, which is 2.4 mm (5.4 mm) smaller than that derived from the fifth-generation (fourth-generation) model. This illustrates that the accumulation of GOCE data and updated data preprocessing methods can be beneficial for MDT recovery. Moreover, the results show that the OIM outperforms the Gaussian filtering approach, where the geostrophic velocity derived from the OIM method has a smaller misfit against the buoy data, by a magnitude of 10 mm/s (17 mm/s) when the zonal (meridional) component is validated. This is mainly due to the error information of input data being used in the optimal interpolation method, which may obtain more reasonable weights of observations than the Gaussian filtering method.


2021 ◽  
Author(s):  
Muhammed Raşit Çevikalp ◽  
Bihter Erol ◽  
Bilal Mutlu ◽  
Serdar Erol

<p>The maintenance of leveling benchmark is both laborious and costly due to distortions caused by geodynamic activities and local deformations. It is necessary to realize geoid-based vertical datum, which also enables calculation from ellipsoidal heights obtained from GNSS to orthometric heights that have physical meaning. It can be considered as an important step for height system unification as it eliminates the problems stem from the conventional vertical datum. The ongoing height modernization efforts in Turkey focus to improve quality and coverage of the gravity data, eliminate errors in existing terrestrial gravity measurements in order to achieve a precise geoid model. Accuracy of the geopotential model is crucial while realizing a geoid model based vertical datum as well as unifying the regional height systems with the International Heights Reference System. In this point of view, we assessed the accuracies of recently released global geopotential models including XGM2019e_2159, GECO, EIGEN-6C4, EGM2008, SGG-UGM-1, EIGEN-6C3stat, and EIGEN-6C2 using high order GNSS/leveling control benchmarks and terrestrial gravity data in Turkey. The reason for choosing these models in the validations is their relatively higher spatial resolutions and improved accuracies compared to other GGMs in published validation results with globally distributed terrestrial data. The GNSS/leveling data used in validations include high accuracy GNSS coordinates in ITRF datum with co-located Helmert orthometric heights in regional vertical datum. 100 benchmarks are homogeneously distributed in the country with the benchmarks along the coastlines. In addition, the terrestrial gravity anomalies with 5 arc-minute resolution were also used in the tests. In order to have comparable results, residual terrain effect has been restored to the GGM derived parameters. Numerical tests revealed significant differences in accuracies of the tested GGMs. The most accurate GGM has the comparable performance with official regional geoid model solutions in Turkey. The drawn results in the study were interpreted and discussed from practical applications and height system unification points in conclusion.</p>


Sign in / Sign up

Export Citation Format

Share Document