Prediction of internal temperature in stator winding of three-phase induction motors with ann

2010 ◽  
Vol 21 (1) ◽  
pp. 120-128 ◽  
Author(s):  
H. Selcuk Nogay
Author(s):  
Ahmed Thamer Radhi ◽  
Wael Hussein Zayer

The paper deals with faults diagnosis method proposed to detect the inter-turn and turn to earth short circuit in stator winding of three-phase high-speed solid rotor induction motors. This method based on negative sequence current of motor and fuzzy neural network algorithm. On the basis of analysis of 2-D electromagnet field in the solid rotor the rotor impedance has been derived to develop the solid rotor induction motor equivalent circuit. The motor equivalent circuit is simulated by MATLAB software to study and record the data for training and testing the proposed diagnosis method. The numerical results of proposed approach are evaluated using simulation of a three-phase high-speed solid-rotor induction motor of two-pole, 140 Hz. The results of simulation shows that the proposed diagnosis method is fast and efficient for detecting inter-turn and turn to earth faults in stator winding of high-speed solid-rotor induction motors with different faults conditions


2020 ◽  
Vol 2 (1) ◽  
pp. 32
Author(s):  
Guilherme Lucas ◽  
Marco Rocha ◽  
Bruno Castro ◽  
José Leão ◽  
André Andreoli

Three-phase induction motors (TIMs) play a key role in industrial production lines. Due to their robustness and versatility, TIMs are commonly used to drive different devices like fans, conveyors, sieves, and compressors. However, these devices are often exposed to mechanical and electrical faults. Among them, failures in stator winding insulation lead to severe damage to the TIMs and can cause operational interruptions. Therefore, several approaches have been developed to monitor electrical faults in induction motors. The acoustic emission (AE) stands out as an efficient non-invasive technique (NIT) for TIM diagnosis. In this work, the AE analysis was applied to detect winding insulation faults and identify which electrical phase was affected. To achieve this proposal, a TIM was subjected to insulation faults in each of the three electrical phases, and the acoustic signals were acquired by four piezoelectric sensors attached to the motor. These signals were processed using a new technique, which calculates the energy of a specific range of the signal spectrum and assigns the energy values of each piezoelectric sensor to a coordinate axis (x, y). By ploting the values for each fault condition, this technique allows the detection of insulation faults and correctly identifies the affected phase by clustering the resulting values. Finally, the proposed methodology presented satisfactory results in winding insulation diagnosis.


Sign in / Sign up

Export Citation Format

Share Document