electrical faults
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 56)

H-INDEX

16
(FIVE YEARS 4)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260888
Author(s):  
Yanjun Xiao ◽  
Kuan Wang ◽  
Weiling Liu ◽  
Kai Peng ◽  
Feng Wan

The electrical control system of rapier weaving machines is susceptible to various disturbances during operation and is prone to failures. This will seriously affect the production and a fault diagnosis system is needed to reduce this effect. However, the existing popular fault diagnosis systems and methods need to be improved due to the limitations of rapier weaving machine process and electrical characteristics. Based on this, this paper presents an in-depth study of rapier loom fault diagnosis system and proposes a rapier loom fault diagnosis method combining edge expert system and cloud-based rough set and Bayesian network. By analyzing the process and fault characteristics of rapier loom, the electrical faults of rapier loom are classified into common faults and other faults according to the frequency of occurrence. An expert system is built in the field for edge computing based on knowledge fault diagnosis experience to diagnose common loom faults and reduce the computing pressure in the cloud. Collect loom fault data in the cloud, train loom fault diagnosis algorithms to diagnose other faults, and handle other faults diagnosed by the expert system. The effectiveness of loom fault diagnosis is verified by on-site operation and remote monitoring of the loom human-machine interaction system. Technical examples are provided for the research of loom fault diagnosis system.


2021 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Bayron Perea-Mena ◽  
Jaime A. Valencia-Velasquez ◽  
Jesús M. López-Lezama ◽  
Juan B. Cano-Quintero ◽  
Nicolás Muñoz-Galeano

This paper deals with circuit breakers (CBs) used in direct current microgrids (DCMGs) for protection against electrical faults, focusing on their evolution and future challenges in low voltage (<1.5 kV) and medium voltage (between 1.5 kV and 20 kV). In recent years, proposals for new circuit-breaker features have grown. Therefore, a review on the evolution of circuit breakers for DCMGs is of utmost importance. In general terms, this paper presents a review concerning the evolution of circuit breakers used in DCMGs, focusing on fuses, mechanical circuit breakers (MCBs), solid-state circuit breakers (SSCBs), and hybrid circuit breakers (HCBs). Their evolution is presented highlighting the advantages and disadvantages of each device. It was found that although modern circuit breakers have begun to be commercially available, many of them are still under development; consequently, some traditional fuses and MCBs are still common in DCMGs, but under certain restrictions or limitations. Future challenges that would allow a successful and adequate implementation of circuit breakers in DCMGs are also presented.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8542
Author(s):  
Julian Röder ◽  
Georg Jacobs ◽  
Tobias Duda ◽  
Dennis Bosse ◽  
Fabian Herzog

Electrical faults can lead to transient and dynamic excitations of the electromagnetic generator torque in wind turbines. The fast changes in the generator torque lead to load oscillations and rapid changes in the speed of rotation. The combination of dynamic load reversals and changing rotational speeds can be detrimental to gearbox components. This paper shows, via simulation, that the smearing risk increases due to the electrical faults for cylindrical roller bearings on the high speed shaft of a wind turbine research nacelle. A grid fault was examined for the research nacelle with a doubly fed induction generator concept. Furthermore, a converter fault was analyzed for the full size converter concept. Both wind turbine grid connection concepts used the same mechanical drive train. Thus, the mechanical component loading was comparable. During the grid fault, the risk of smearing increased momentarily by a maximum of around 1.8 times. During the converter fault, the risk of smearing increased by around 4.9 times. Subsequently, electrical faults increased the risk of damage to the wind turbine gearbox bearings, especially on the high speed stage.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Fausto Valencia ◽  
Hugo Arcos ◽  
Franklin Quilumba

This research compares four machine learning techniques: linear regression, support vector regression, random forests, and artificial neural networks, with regard to the determination of mechanical stress in power transformer winding conductors due to three-phase electrical faults. The accuracy compared with finite element results was evaluated for each model. The input data were the transient electrical fault currents of power system equivalents with impedances from low to high values. The output data were the mechanical stress in the conductors located in the middle of the winding. To simplify the design, only one hyperparameter was varied on each machine learning technique. The random forests technique had the most accurate results. The highest errors were found for low-stress values, mainly due to the high difference between maximum and minimum stresses, which made the training of the machine learning models difficult. In the end, an accurate model that could be used in the continuous monitoring of mechanical stress was obtained.


Author(s):  
Mohamed Boudiaf Koura ◽  
Ahmed Hamida Boudinar ◽  
Ameur Fethi Aimer ◽  
Mohammed-el-Amine Khodja

Several researches claim that the vibration technique, widely used in industry, is more efficient compared to the stator current analysis in the diagnosis of mechanical faults. On the other hand, researches show that the current technique is more advantageous especially in the diagnosis of electrical faults, in addition to the simplicity of the sensor positioning. The aim of this paper is to show that both diagnosis techniques can be complementary. For this, a comparative analysis of both diagnosis techniques performances is achieved. To this end, fault diagnosis of rolling element bearings used in induction motors is taken as an example, given the importance of bearings in energy transfer. Experimental results obtained show the complementarity of both techniques and their performances according to the faulty element of bearings.


Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 253
Author(s):  
Aleksander Suti ◽  
Gianpietro Di Rito ◽  
Roberto Galatolo

This paper deals with the development and the performance characterization of a novel Fault-Tolerant Control (FTC) aiming to the diagnosis and accommodation of electrical faults in a three-phase Permanent Magnet Synchronous Motor (PMSM) employed for the propulsion of a modern lightweight fixed-wing UAV. To implement the fault-tolerant capabilities, a four-leg inverter is used to drive the reference PMSM, so that a system reconfiguration can be applied in case of a motor phase fault or an inverter fault, by enabling the control of the central point of the three-phase connection. A crucial design point is to develop Fault-Detection and Isolation (FDI) algorithms capable of minimizing the system failure transients, which are typically characterized by high-amplitude high-frequency torque ripples. The proposed FTC is composed of two sections: in the first, a deterministic model-based FDI algorithm is used, based the evaluation of the current phasor trajectory in the Clarke’s plane; in the second, a novel technique for fault accommodation is implemented by applying a reference frame transformation to post-fault commands. The FTC effectiveness is assessed via detailed nonlinear simulation (including sensors errors, digital signal processing, mechanical transmission compliance, propeller loads and electrical faults model), by characterizing the FDI latency and the post-fault system performances when open circuit faults are injected. Compared with reports in the literature, the proposed FTC demonstrates relevant potentialities: the FDI section of the algorithm provides the smallest ratio between latency and monitoring samples per electrical period, while the accommodation section succeeds in both eliminating post-fault torque ripples and maintaining the mechanical power output with negligible efficiency degradation.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5718
Author(s):  
Regelii Suassuna de Andrade Ferreira ◽  
Patrick Picher ◽  
Hassan Ezzaidi ◽  
Issouf Fofana

Frequency response analysis (FRA) is a powerful and widely used tool for condition assessment in power transformers. However, interpretation schemes are still challenging. Studies show that FRA data can be influenced by parameters other than winding deformation, including temperature. In this study, a machine-learning approach with temperature as an input attribute was used to objectively identify faults in FRA traces. To the best knowledge of the authors, this has not been reported in the literature. A single-phase transformer model was specifically designed and fabricated for use as a test object for the study. The model is unique in that it allows the non-destructive interchange of healthy and distorted winding sections and, hence, reproducible and repeatable FRA measurements. FRA measurements taken at temperatures ranging from −40 °C to 40 °C were used first to describe the impact of temperature on FRA traces and then to test the ability of the machine learning algorithms to discriminate between fault conditions and temperature variation. The results show that when temperature is not considered in the training dataset, the algorithm may misclassify healthy measurements, taken at different temperatures, as mechanical or electrical faults. However, once the influence of temperature was considered in the training set, the performance of the classifier as studied was restored. The results indicate the feasibility of using the proposed approach to prevent misclassification based on temperature changes.


2021 ◽  
Author(s):  
Yi Jiang ◽  
Hanwen Sun ◽  
Lezhou Hong ◽  
Rui Lin ◽  
Wei Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document