A high order spectral volume solution to the Burgers' equation using the Hopf-Cole transformation

2011 ◽  
Vol 69 (4) ◽  
pp. 781-801 ◽  
Author(s):  
Ravi Kannan ◽  
Z.J. Wang
2021 ◽  
Author(s):  
Yawei Xie ◽  
Michael G. Edwards

Abstract A novel higher resolution spectral volume method coupled with a control-volume distributed multi-Point flux approximation (CVD-MPFA) is presented on unstructured triangular grids for subsurface reservoir simulation. The flow equations involve an essentially hyperbolic convection equation coupled with an elliptic pressure equation resulting from Darcy’s law together with mass conservation. The spectral volume (SV) method is a locally conservative, efficient high-order finite volume method for convective flow. In 2D geometry, the triangular cell is subdivided into sub-cells, and the average state variables in the sub-cells are used to reconstruct a high-order polynomial in the triangular cell. The focus here is on an efficient strategy for reconstruction of both a higher resolution approximation of the convective transport flux and Darcy-flux approximation on sub-cell interfaces, which is also coupled with a discrete fracture model. The strategy involves coupling of the SV method and reconstructed CVD-MPFA fluxes at the faces of the spectral volume, to obtain an efficient finer scale higher resolution finite-volume method which solves for both the saturation and pressure. A limiting procedure based on a Barth-Jespersen type limiter is used to prevent non-physical oscillations on unstructured grids. The fine scale saturation/concentration field is then updated via the reconstructed finite volume approximation over the sub-cell control-volumes. Performance comparisons are presented for two phase flow problems on 2D unstructured meshes including fractures. The results demonstrate that the spectral-volume method achieves further enhanced resolution of flow and fronts in addition to that of achieved by the standard higher resolution method over first order upwind, while improving upon efficiency.


2017 ◽  
Vol 865 ◽  
pp. 233-238
Author(s):  
Quan Zheng ◽  
Yu Feng Liu

Burgers’ equation on an unbounded domain is an important mathematical model to treat with some external problems of fluid materials. In this paper, we study a FDM of Burgers’ equation using high-order artificial boundary conditions on the unbounded domain. First, the original problem is converted into the heat equation on an unbounded domain by Hopf-Cole transformation. Thus the difficulty of nonlinearity of Burgers’ equation is overcome. Second, high-order artificial boundary conditions are given by using Padé approximation and Laplace transformation. And the conditions confine the heat equation onto a bounded computational domain. Third, we prove the solutions of the resulting heat equation and Burgers’ equation are both stable. Fourth, we establish the FDM for Burgers’ equation on the bounded computational domain. Finally, a numerical example demonstrates the stability, the effectiveness and the second-order convergence of the proposed method.


2004 ◽  
Vol 2004 (62) ◽  
pp. 3321-3332 ◽  
Author(s):  
Nejib Smaoui

We investigate analytically as well as numerically Burgers equation with a high-order nonlinearity (i.e.,ut=νuxx−unux+mu+h(x)). We show existence of an absorbing ball inL2[0,1]and uniqueness of steady state solutions for all integern≥1. Then, we use an adaptive nonlinear boundary controller to show that it guarantees global asymptotic stability in time and convergence of the solution to the trivial solution. Numerical results using Chebychev collocation method with backward Euler time stepping scheme are presented for both the controlled and the uncontrolled equations illustrating the performance of the controller and supporting the analytical results.


Sign in / Sign up

Export Citation Format

Share Document