convective transport
Recently Published Documents


TOTAL DOCUMENTS

783
(FIVE YEARS 136)

H-INDEX

56
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Hooman Hezaveh Hesar Maskan ◽  
Y Todo ◽  
Zhisong Qu ◽  
Boris N Breizman ◽  
Matthew J Hole

Abstract We present a procedure to examine energetic particle phase-space during long range frequency chirping phenomena in tokamak plasmas. To apply the proposed method, we have performed self-consistent simulations using the MEGA code and analyzed the simulation data. We demonstrate a travelling wave in phase-space and that there exist specific slices of phase-space on which the resonant particles lie throughout the wave evolution. For non-linear evolution of an n=6 toroidicity-induced Alfven eigenmode (TAE), our results reveal the formation of coherent phase-space structures (holes/clumps) after coarse-graining of the distribution function. These structures cause a convective transport in phase-space which implies a radial drift of the resonant particles. We also demonstrate that the rate of frequency chirping increases with the TAE damping rate. Our observations of the TAE behaviour and the corresponding phase-space dynamics are consistent with the Berk-Breizman (BB) theory.


Author(s):  
Hadi Ali Madkhali ◽  
Maryam Haneef ◽  
A.S. El-Shafay ◽  
Sayer Obaid Alharbi ◽  
M. Nawaz

2021 ◽  
Vol 933 ◽  
Author(s):  
Francesco Picella ◽  
Sébastien Michelin

To spontaneously break their intrinsic symmetry and self-propel at the micron scale, isotropic active colloidal particles and droplets exploit the nonlinear convective transport of chemical solutes emitted/consumed at their surface by the surface-driven fluid flows generated by these solutes. Significant progress was recently made to understand the onset of self-propulsion and nonlinear dynamics. Yet, most models ignore a fundamental experimental feature, namely the spatial confinement of the colloid, and its effect on propulsion. In this work the self-propulsion of an isotropic colloid inside a capillary tube is investigated numerically. A flexible computational framework is proposed based on a finite-volume approach on adaptative octree grids and embedded boundary methods. This method is able to account for complex geometric confinement, the nonlinear coupling of chemical transport and flow fields, and the precise resolution of the surface boundary conditions, that drive the system's dynamics. Somewhat counterintuitively, spatial confinement promotes the colloid's spontaneous motion by reducing the minimum advection-to-diffusion ratio or Péclet number, ${Pe}$ , required to self-propel; furthermore, self-propulsion velocities are significantly modified as the colloid-to-capillary size ratio $\kappa$ is increased, reaching a maximum at fixed ${Pe}$ for an optimal confinement $0<\kappa <1$ . These properties stem from a fundamental change in the dominant chemical transport mechanism with respect to the unbounded problem: with diffusion now restricted in most directions by the confining walls, the excess solute is predominantly convected away downstream from the colloid, enhancing front-back concentration contrasts. These results are confirmed quantitatively using conservation arguments and lubrication analysis of the tightly confined limit, $\kappa \rightarrow 1$ .


Author(s):  
M. I. Zhumanova ◽  
◽  
M. S. Tungatarova ◽  

In 2015, Kazakhstan and the International Atomic Energy Agency (IAEA) signed an agreement to host a low-enriched uranium bank in Ust-Kamenogorsk. In 2019, several batches of enriched uranium were delivered to Kazakhstan and the bank began operations at the Ulba Metallurgical Plant. When transporting and disposing of radioactive elements, there is a need to reduce this possibility by limiting the transfer of uranium from underground storage to underground water. Therefore, in this article, a study was conducted on the migration of radioactive elements in clay layers during the disposal of radioactive uranium waste. There are now many underground repositories (for some types of radioactive waste). These systems are based on different underground container structures for different geological formations. For underground repositories located in geological environments where enriched uranium can migrate, other system components must reduce this possibility by preventing or limiting uranium mobility. This work investigates the process of convective transport of radioactive elements, in a moist soil layer through the installation of an additional natural clay barrier layer, the migration of radioactive elements during safe disposal, the effect of diffusion and convection through the solid waste layer.


Angiogenesis ◽  
2021 ◽  
Author(s):  
Bianca Nitzsche ◽  
Wen Wei Rong ◽  
Andrean Goede ◽  
Björn Hoffmann ◽  
Fabio Scarpa ◽  
...  

AbstractAngiogenesis describes the formation of new blood vessels from pre-existing vascular structures. While the most studied mode of angiogenesis is vascular sprouting, specific conditions or organs favor intussusception, i.e., the division or splitting of an existing vessel, as preferential mode of new vessel formation. In the present study, sustained (33-h) intravital microscopy of the vasculature in the chick chorioallantoic membrane (CAM) led to the hypothesis of a novel non-sprouting mode for vessel generation, which we termed “coalescent angiogenesis.” In this process, preferential flow pathways evolve from isotropic capillary meshes enclosing tissue islands. These preferential flow pathways progressively enlarge by coalescence of capillaries and elimination of internal tissue pillars, in a process that is the reverse of intussusception. Concomitantly, less perfused segments regress. In this way, an initially mesh-like capillary network is remodeled into a tree structure, while conserving vascular wall components and maintaining blood flow. Coalescent angiogenesis, thus, describes the remodeling of an initial, hemodynamically inefficient mesh structure, into a hierarchical tree structure that provides efficient convective transport, allowing for the rapid expansion of the vasculature with maintained blood supply and function during development.


2021 ◽  
Author(s):  
Anahid Khoobyar ◽  
Anita Penkova ◽  
Mark S. Humayun ◽  
Satwindar Singh Sadhal

Abstract The purpose of this study is to investigate the effect of partial liquefaction (due to ageing) of the vitreous humor on the transport of ocular drugs. In our model, the gel part of the vitreous is treated as a Darcy-type porous medium. A spherical region within the porous part of vitreous is in a liquid state which, for computational purposes, is also treated as a porous medium but with a much higher permeability. Using the finite element method, a time-dependent, three-dimensional model has been developed to computationally simulate (using the Petrov-Galerkin method) the transport of intravitreally injected macromolecules where both convection and diffusion are present. From a fluid physics and transport phenomena perspective, the results show many interesting features. For pressure-driven flow across the vitreous, the flow streamlines converge into the liquefied region as the flow seeks the fastest path of travel. Furthermore, as expected, with increased level of liquefaction, the overall flow rate increases for a given pressure drop. We have quantified this effect for various geometrical considerations. The flow convergence into the liquefied region has important implication for convective transport. One effect is the clear diversion of the drug as it reaches the liquefied region. In some instances, the entry point of the drug in the retinal region gets slightly shifted due to liquefaction. While the model has many approximations and assumptions, the focus is illustrating the effect of liquefaction as one of the building blocks towards a fully comprehensive model.


Author(s):  
Siti Farah Haryatie Mohd Kanafiah ◽  
Abdul Rahman Mohd Kasim ◽  
Syazwani Mohd Zokri ◽  
Mohd Rijal Ilias

Traditional heat transfer fluids frequently encounter several limitations in the heat transfer process, due to the lower thermal conductivity in heat transfer process industries, and also has an impact on the performance of heat transfer in industrial sectors. In order to overcome the problem, researchers have currently considered an alternative development of heat transfer of fluids. Hence, this study will concentrate on the problem of steady combined convective transport. In particular, the flow of Brinkman-viscoelastic fluid over a horizontal circular cylinder with the influence of convective boundary condition (CBC) was investigated. Using the necessary similarity transformation, the governing equations were converted into a less complicated form and numerically solved by using Runge-Kutta-Fehlberg-method, which was programmed in Maple software. The influence of Biot number, combined convection, Brinkman and viscoelastic parameters are analyzed and demonstrated in graphs and tables. Numerical result showed that the fluid velocity increased with improving conjugate and combined convection parameter, but decreased with increasing Brinkman and viscoelastic parameter. It is also discovered the reverse trend on temperature profiles.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012043
Author(s):  
D V Alexandrov ◽  
P K Galenko

Abstract The solid-phase pattern in the form of a dendrite is one of the frequently met structures produced from undercooled liquids. In the last decades, an analytical approach describing the steady-state crystal growth in the presence of conductive heat and mass transport has been constructed. However, experimental works show that crystal patterns frequently grow in the presence of convection. In this paper, a theoretical description based on convective heat and solute concentration transport near the solid/liquid phase interface is developed. The stable regime of crystallization in the presence of vigorous convection near the steady-state crystal vertex is studied. The stability analysis, determining the stable growth mode, and the undercooling balance law have been applied to deduce the stable values for the growth rate and tip diameter. Our analytical predictions (with convective transport) well describe experimental data for a small melt undercooling. Moreover, we compare both convective and conductive mechanisms in the vicinity of the crystal vertex. Our theory shows that convective fluxes substantially change the steady-state growth of crystals.


Sign in / Sign up

Export Citation Format

Share Document