scholarly journals Active control of compressible channel flow up to Mab=3 using direct numerical simulations with spanwise velocity modulation at the walls

2022 ◽  
Author(s):  
Marius Ruby ◽  
Holger Foysi
1995 ◽  
Vol 286 ◽  
pp. 1-23 ◽  
Author(s):  
Vadim Borue ◽  
Steven A. Orszag ◽  
Ilya Staroselsky

We report direct numerical simulations of incompressible unsteady open-channel flow. Two mechanisms of turbulence production are considered: shear at the bottom and externally imposed stress at the free surface. We concentrate upon the effects of mutual interaction of small-amplitude gravity waves with in-depth turbulence and statistical properties of the near-free-surface region. Extensions of our approach can be used to study turbulent mixing in the upper ocean and wind–sea interaction, and to provide diagnostics of bulk turbulence.


2008 ◽  
Vol 598 ◽  
pp. 177-199 ◽  
Author(s):  
OLOF GRUNDESTAM ◽  
STEFAN WALLIN ◽  
ARNE V. JOHANSSON

Fully developed rotating turbulent channel flow has been studied, through direct numerical simulations, for the complete range of rotation numbers for which the flow is turbulent. The present investigation suggests that complete flow laminarization occurs at a rotation number Ro = 2Ωδ/Ub ≤ 3.0, where Ω denotes the system rotation, Ub is the mean bulk velocity and δ is the half-width of the channel. Simulations were performed for ten different rotation numbers in the range 0.98 to 2.49 and complemented with earlier simulations (done in our group) for lower values of Ro. The friction Reynolds number Reτ = uτδ/ν (where uτ is the wall-shear velocity and ν is the kinematic viscosity) was chosen as 180 for these simulations. A striking feature of rotating channel flow is the division into a turbulent (unstable) and an almost laminarized (stable) side. The relatively distinct interface between these two regions was found to be maintained by a balance where negative turbulence production plays an important role. The maximum difference in wall-shear stress between the two sides was found to occur for a rotation number of about 0.5. The bulk flow was found to monotonically increase with increasing rotation number and reach a value (for Reτ = 180) at the laminar limit (Ro = 3.0) four times that of the non-rotating case.


2020 ◽  
Vol 36 (5) ◽  
pp. 691-698
Author(s):  
Che-Yu Lin ◽  
Chao-An Lin

ABSTRACTDirect numerical simulations have been applied to simulate flows with polymer additives. FENE-P (finite-extensible-nonlinear-elastic-Peterlin) dumbbell model solving for the conformation tensor is adopted to investigate the influence of the polymer on the flowfield. Boundary treatments of the conformation tensor on the flowfield are examined first, where boundary condition based on the linear extrapolation scheme provides more accurate results with second-order accurate error norms. Further simulations of the turbulent channel flow at different Weissenberg numbers are also conducted to investigate the influence on drag reduction. Drag reduction increases in tandem with the increase of Weissenberg number and the increase saturates at Weτ~200, where the drag reduction is close to the maximum drag reduction (MDR) limit. At the regime of y+ > 5, the viscous layer thickens with the increase of the Weissenberg number showing a departure from the traditional log-law profile, and the velocity profiles approach the MDR line at high Weissenberg number. The Reynolds stress decreases in tandem with the increase of Weτ, whereas the levels of laminar stress and polymer stress act adversely. However, as the Weissenberg number increases, the proportion of the laminar stress in the total stress increases, and this contributes to the drag reduction of the polymer flow.


2019 ◽  
Vol 874 ◽  
pp. 797-820 ◽  
Author(s):  
Jaehee Chang ◽  
Taeyong Jung ◽  
Haecheon Choi ◽  
John Kim

We perform direct numerical simulations of a turbulent channel flow with a lubricated micro-grooved surface to investigate the effects of this surface on the slip characteristics at the interface and the friction drag. The interface between water and lubricant is assumed to be flat, i.e. the surface-tension effect is neglected. The solid substrate, where a lubricant is infused, is composed of straight longitudinal grooves. The flow rate of water inside the channel is maintained constant, and a lubricant layer under the interface is shear driven by the turbulent water flow above. A turbulent channel flow with a superhydrophobic (i.e. air-lubricated) surface having the same solid substrate configuration is also simulated for comparison. The results show that the drag reduction with the liquid-infused surface highly depends on the lubricant viscosity as well as the groove width and aspect ratio. The amounts of drag reduction with the liquid-infused surfaces are not as good as those with superhydrophobic surfaces, but are still meaningfully large. For instance, the maximum drag reduction by the heptane-infused surface is approximately 13 % for a rectangular groove whose spanwise width and depth in wall units are 12 and 14.4, respectively, whereas a superhydrophobic surface with the same geometry results in a drag reduction of 21 %. The mean slip length normalized by the viscosity ratio and groove depth depends on the groove aspect ratio. The ratio of fluctuating spanwise slip length to the streamwise one is between 0.25 (ideal surface without groove structures) and 1 (i.e. isotropic slip), indicating that the slip is anisotropic. Using the Stokes flow assumption, the effective streamwise and spanwise slip lengths are expressed as a function of groove geometric parameters and lubricant viscosity. We also suggest a predictive model for drag reduction with the heptane-lubricated surface by combining the predicted effective slip lengths with the drag reduction formula used for riblets (Luchini et al., J. Fluid Mech., vol. 228, 1991, pp. 87–109). The predicted drag reductions are in good agreements with those from the present and previous direct numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document