solid substrate
Recently Published Documents


TOTAL DOCUMENTS

1127
(FIVE YEARS 175)

H-INDEX

55
(FIVE YEARS 7)

PROTOPLASMA ◽  
2021 ◽  
Author(s):  
Janine M.R. Fürst-Jansen ◽  
Sophie de Vries ◽  
Maike Lorenz ◽  
Klaus von Schwartzenberg ◽  
John M. Archibald ◽  
...  

AbstractThe streptophyte algal class Zygnematophyceae is the closest algal sister lineage to land plants. In nature, Zygnematophyceae can grow in both terrestrial and freshwater habitats and how they do this is an important unanswered question. Here, we studied what happens to the zygnematophyceaen alga Mougeotia sp., which usually occurs in permanent and temporary freshwater bodies, when it is shifted to liquid growth conditions after growth on a solid substrate. Using global differential gene expression profiling, we identified changes in the core metabolism of the organism interlinked with photosynthesis; the latter went hand in hand with measurable impact on the photophysiology as assessed via pulse amplitude modulation (PAM) fluorometry. Our data reveal a pronounced change in the overall physiology of the alga after submergence and pinpoint candidate genes that play a role. These results provide insight into the importance of photophysiological readjustment when filamentous Zygnematophyceae transition between terrestrial and aquatic habitats.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1591
Author(s):  
Marina S. Zelenskaya ◽  
Alina R. Izatulina ◽  
Olga V. Frank-Kamenetskaya ◽  
Dmitry Y. Vlasov

Microfungi were able to alternate solid substrate in various environments and play a noticeable role in the formation of insoluble calcium oxalate crystals in subaerial biofilms on rock surfaces. The present work describes how iron oxalate dihydrate humboldtine is acquired under the influence of the acid-producing microscopic fungus Aspergillus niger on the surface of two iron- bearing mineral substrates in vitro. Pyrrhotite and siderite rocks, as well as the products of their alteration, were investigated using a complex of analytical methods, including powder X-ray diffraction, optical microscopy, scanning electron microscopy and EDX spectroscopy. The effect of the underlying rocks with different composition and solubility and different oxidation states of iron on Fe-oxalate crystallization and on the morphology of humboldtine crystals was shown. The mechanisms of humboldtine formation were discussed. The results obtained in vitro seem promising for using fungi in bioleaching iron and other metals from processed ores and for the development of environmentally friendly biotechnologies.


Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 520
Author(s):  
Niccolò Paccotti ◽  
Alessandro Chiadò ◽  
Chiara Novara ◽  
Paola Rivolo ◽  
Daniel Montesi ◽  
...  

A sharpened control over the parameters affecting the synthesis of plasmonic nanostructures is often crucial for their application in biosensing, which, if based on surface-enhanced Raman spectroscopy (SERS), requires well-defined optical properties of the substrate. In this work, a method for the microfluidic synthesis of Ag nanoparticles (NPs) on porous silicon (pSi) was developed, focusing on achieving a fine control over the morphological characteristics and spatial distribution of the produced nanostructures to be used as SERS substrates. To this end, a pSi membrane was integrated in a microfluidic chamber in which the silver precursor solution was injected, allowing for the real-time monitoring of the reaction by UV–Vis spectroscopy. The synthesis parameters, such as the concentration of the silver precursor, the temperature, and the flow rate, were varied in order to study their effects on the final silver NPs’ morphology. Variations in the flow rate affected the size distribution of the NPs, whereas both the temperature and the concentration of the silver precursor strongly influenced the rate of the reaction and the particle size. Consistently with the described trends, SERS tests using 4-MBA as a probe showed how the flow rate variation affected the SERS enhancement uniformity, and how the production of larger NPs, as a result of an increase in temperature or of the concentration of the Ag precursor, led to an increased SERS efficiency.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alexandra Šimonovičová ◽  
Alžbeta Takáčová ◽  
Ivan Šimkovic ◽  
Sanja Nosalj

Despite the negative impact on the environment, incineration is one of the most commonly used methods for dealing with waste. Besides emissions, the production of ash, which usually shows several negative properties, such as a higher content of hazardous elements or strongly alkaline pH, is problematic from an environmental viewpoint as well. The subject of our paper was the assessment of biosorption of Ni from ash material by a microbial consortium of Chlorella sp. and Aspergillus niger. The solid substrate represented a fraction of particles of size <0.63 mm with a Ni content of 417 mg kg–1. We used a biomass consisting of two different organisms as the sorbent: a non-living algae culture of Chlorella sp. (an autotrophic organism) and the microscopic filamentous fungus A. niger (a heterotrophic organism) in the form of pellets. The experiments were conducted under static conditions as well as with the use of shaker (170 rpm) with different modifications: solid substrate, Chlorella sp. and pellets of A. niger; solid substrate and pellets of A. niger. The humidity-temperature conditions were also changed. Sorption took place under dry and also wet conditions (with distilled water in a volume of 30–50 ml), partially under laboratory conditions at a temperature of 25°C as well as in the exterior. The determination of the Ni content was done using inductively coupled plasma optical emission spectrometry (ICP-OES). The removal of Ni ranged from 13.61% efficiency (Chlorella sp., A. niger with the addition of 30 ml of distilled water, outdoors under static conditions after 48 h of the experiment) to 46.28% (Chlorella sp., A. niger with the addition of 30 ml of distilled water, on a shaker under laboratory conditions after 48 h of the experiment). For the purpose of analyzing the representation of functional groups in the microbial biomass and studying their interaction with the ash material, we used Fourier-transform infrared (FTIR) spectroscopy. We observed that the amount of Ni adsorbed positively correlates with absorbance in the spectral bands where we detect the vibrations of several organic functional groups. These groups include hydroxyl, aliphatic, carbonyl, carboxyl and amide structural units. The observed correlations indicate that, aside from polar and negatively charged groups, aliphatic or aromatic structures may also be involved in sorption processes due to electrostatic attraction. The correlation between absorbance and the Ni content reached a maximum in amide II band (r = 0.9; P < 0.001), where vibrations of the C=O, C–N, and N–H groups are detected. The presented results suggest that the simultaneous use of both microorganisms in biosorption represents an effective method for reducing Ni content in a solid substrate, which may be useful as a partial process for waste disposal.


Author(s):  
Ryugo TERO ◽  
Natsumi Kobayashi

Abstract Supported lipid bilayers (SLBs) are artificial lipid bilayers at solid-liquid interfaces applied as cell membrane model systems. An advantage of the artificial system is that the lipid composition can be controlled arbitrarily. On the other hand, the SLB formation process and its efficiency are affected by the properties of the solid substrate surface. In this study, we investigated the effect of the electrostatic interaction between the negatively charged SiO2/Si substrate surface and the lipid bilayer membrane on the composition of binary SLBs comprising anionic and neutral lipids. The phase transition temperature and the area fraction of lipid domains of SLB were evaluated by fluorescence microscopy and the fluorescence recovery after photobleaching. The neutral lipid was preferably included in SLB, but the anionic lipid ratio increased with Ca2+ concentration during the SLB formation. The lipid composition in SLB can be controlled by modulating the substrate-induced electrostatic potential.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012132
Author(s):  
D Y Kochkin ◽  
A L Bogoslovtseva ◽  
O A Kabov

Abstract This work investigates the dynamics of the contact line during the propagation of a dry spot in a water layer on a solid substrate. The substrate is coated with fluoropolymer by using a hot wire chemical vapor deposition method. The dry spot is generated using a thermocapillary mechanism caused by the heating of the substrate from below by the laser. By analyzing schlieren images, the dependence of the velocity of the contact line during the propagation of a dry spot was obtained for various initial thicknesses of liquid films.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3390
Author(s):  
Bogdan Lewczuk ◽  
Natalia Szyryńska

The development of field-emission scanning electron microscopes for high-resolution imaging at very low acceleration voltages and equipped with highly sensitive detectors of backscattered electrons (BSE) has enabled transmission electron microscopy (TEM)-like imaging of the cut surfaces of tissue blocks, which are impermeable to the electron beam, or tissue sections mounted on the solid substrates. This has resulted in the development of methods that simplify and accelerate ultrastructural studies of large areas and volumes of biological samples. This article provides an overview of these methods, including their advantages and disadvantages. The imaging of large sample areas can be performed using two methods based on the detection of transmitted electrons or BSE. Effective imaging using BSE requires special fixation and en bloc contrasting of samples. BSE imaging has resulted in the development of volume imaging techniques, including array tomography (AT) and serial block-face imaging (SBF-SEM). In AT, serial ultrathin sections are collected manually on a solid substrate such as a glass and silicon wafer or automatically on a tape using a special ultramicrotome. The imaging of serial sections is used to obtain three-dimensional (3D) information. SBF-SEM is based on removing the top layer of a resin-embedded sample using an ultramicrotome inside the SEM specimen chamber and then imaging the exposed surface with a BSE detector. The steps of cutting and imaging the resin block are repeated hundreds or thousands of times to obtain a z-stack for 3D analyses.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4122
Author(s):  
Yasir Anwar ◽  
Hani S. H. Mohammed Ali ◽  
Waseeq Ur Rehman ◽  
Hassan A. Hemeg ◽  
Shahid Ali Khan

The development of a solid substrate for the support and stabilization of zero-valent metal nanoparticles (NPs) is the heart of the catalyst system. In the current embodiment, we have prepared solid support comprise of alginate-coated cellulose filter paper (Alg/FP) for the synthesis and stabilization of Co nanoparticles (NPs) named as Alg/FP@Co NPs. Furthermore, Alginate polymer was blended with 1 and 2 weight percent of CoNi NPs to make Alg-CoNi1/FP and Alg-CoNi2/FP, respectively. All these stabilizing matrixes were used as dip-catalyst for the degradation of azo dyes and reduction of 4-nitrophenol (4NP). The effect of initial dye concentration, amount of NaBH4, and catalyst dosage was assessed for the degradation of Congo red (CR) dye by using Alg-CoNi2/FP@Co NPs. Results indicated that the highest kapp value (3.63 × 10−1 min−1) was exhibited by Alg-CoNi2/FP@Co NPs and lowest by Alg/FP@Co NPs against the discoloration of CR dye. Furthermore, it was concluded that Alg-CoNi2/FP@Co NPs exhibited strong catalyst activity against CR, and methyl orange dye (MO) degradation as well as 4NP reduction. Antibacterial activity of the prepared composites was also investigated and the highest l activity was shown by Alg-CoNi2/FP@Co NPs, which inhibit 2.5 cm zone of bacteria compared to other catalysts.


Sign in / Sign up

Export Citation Format

Share Document