lubricant viscosity
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 26)

H-INDEX

25
(FIVE YEARS 3)

Author(s):  
Jian Sun ◽  
Jiaxing Yang ◽  
Jinmei Yao ◽  
Junxing Tian ◽  
Zhongxian Xia ◽  
...  

Abstract As a new high-end bearing product, full ceramic ball bearings are favoured in a variety. However, there have been few studies on the lubrication of full ceramic ball bearings. The purpose of this study is to reveal the relationship between the vibration and temperature rise of full ceramic angular contact ball bearings and the lubricant viscosity, and to improve the service life of the bearings. In this study, the effects of lubricant viscosity on the vibration and temperature rise of silicon nitride full ceramic angular contact ball bearings under different axial loads and rotation speeds were tested. Herein, a mathematical model of oil lubrication suitable for full ceramic ball bearings is established and the relationship between the lubricant viscosity, lubricant film thickness, outer ring vibration and temperature rise of the bearing is analyzed. It was found that the vibration and temperature rise first decrease and then increase with the increase of lubricant viscosity. In this range, there is an optimal viscosity value to minimize the vibration and temperature rise of the full ceramic angular contact ball bearing. The contact surface wear of the full ceramic angular contact ball bearing varies greatly under different lubricant viscosities. There is no obvious wear on the contact surface under optimal viscosity, and the service life of the bearing is greatly improved. These results can play an important role in revealing the lubricant mechanism of full ceramic ball bearings and improving their service life under optimal lubrication.


Author(s):  
Suman K Mandal ◽  
Biplab Bhattacharjee ◽  
Nabarun Biswas ◽  
Kishan Choudhuri ◽  
Prasun Chakraborti

Bearings are designed to support the loads normally applied to the shaft, while allowing relative movement between two machine elements. Journal or sliding bearings are perhaps the most well-known sorts of hydrodynamic bearings. The journal bearings contain no rolling elements and these bearings’ design and construction are simple, but their operation and theory are complex. Due to this and other advantages, journal bearings are much preferred in engineering applications. Simultaneously, the associated research and development have resulted in reasonable progress and therefore, a thorough review of these is earnestly felt. The static and dynamic characteristics of hydrodynamic journal bearings mainly depend on the lubricant viscosity and other factors such as load, speed, friction, and eccentricity. The review analysis focused on nanofluid lubricated hydrodynamic journal bearings are one of the rare topics of interest among tribologists. The use of a nanofluid as a lubricant is very important as it significantly improves the performance characteristics of the investigated bearing. The aggregation of nanoparticles in lubricants available commercially can cause a sharp increase in pressure drop and significantly improve the lubricant viscosity, which leads to an increase in load-carrying capacity. The tribological properties of various lubricants/base oils can be augmented by nanoparticles containing the lubricant. Studies have shown that compared to other conventional engine oils the load-carrying capacity is increased with nanoparticles containing the lubricant.


2021 ◽  
pp. 1-20
Author(s):  
Sheng Li ◽  
Ali Kolivand ◽  
Anusha Anisetti

Abstract Utilizing a computational approach, this study quantifies the onset of lubrication starvation for line contacts of rough surfaces operating under typical ranges of automotive gearing applications. The response parameter is selected as the critical film thickness supply, at which starvation initiates. The potential influential parameters (predictors) considered include normal force density, rolling velocity, sliding, lubricant viscosity, and surface roughness amplitude. A non-Newtonian thermal mixed lubrication model is employed to determine the critical lubricant supply under various operating and surface roughness conditions. General linear regression is implemented to reach an easy-to-use equation (R-squared value higher than 97%), facilitating the quantification of starvation dependence on the predictors that are statistically significant.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhigang Zhang ◽  
Ling Zou ◽  
Hang Liu ◽  
Jin Feng ◽  
Zhige Chen

To determine the factors affecting the dynamic transmitted torque response characteristics of the wet clutch, the oil film pressure, the asperity contact pressure, the applied pressure, and the dynamic transmitted torque model were established, using the fourth-order Runge–Kutta numerical method to couple the oil film thickness and the speed difference to obtain the change curve of the joint pressure and the transmitted torque. The established model was used to study the influence of the pressure hysteresis time, lubricant viscosity, friction lining permeability, friction pair equivalent elastic modulus, and surface combined roughness RMS on the dynamic transmitted torque response during the wet clutch engagement. The results indicate that the longer the pressure hysteresis time, the smaller the permeability of the friction lining, the smaller the equivalent elastic modulus, the greater surface combined roughness RMS, the more delayed the response of the transmitted torque, and the smaller the level of jerk of the wet clutch engagement. Also, the lower the lubricant viscosity, the greater the permeability of the friction lining, and the smaller the equivalent elastic modulus is and the greater surface combined roughness RMS is, the more sensitive the transmitted torque response is to pressure response changes.


Author(s):  
George K Nikas

The entrapment/rejection process of spherical, rigid microparticles in elliptical, rough elastohydrodynamic contacts is modelled. An earlier model of the author is extended to include van der Waals intermolecular forces, in addition to mechanical (reaction and friction) and fluid–particle forces. Surface roughness effects are also introduced in terms of the intermolecular force formulation and in the microscale friction (particle–asperity) sub-model. Possibilities related to particle entry into a contact are quantified by weight factors and performance indices. A total entrapment index is defined and linked to the probability of particle entrapment. A parametric analysis investigates the effect of the intermolecular particle force on the entrapment probability by varying the contact load, lubricant viscosity, elastic modulus of the contacting solids, contact velocity and the macroscopic (Coulomb) coefficient of friction.


Biotribology ◽  
2021 ◽  
Vol 25 ◽  
pp. 100162
Author(s):  
Lauren Geurds ◽  
Yuan Xu ◽  
Jason R. Stokes
Keyword(s):  

2021 ◽  
pp. 106840
Author(s):  
Morten Opprud Jakobsen ◽  
Eskild Sune Herskind ◽  
Kim Bjerge ◽  
Peter Ahrendt ◽  
Christian Fischer Pedersen ◽  
...  

Author(s):  
Göksu Kandemir ◽  
Simon Smith ◽  
Jinju Chen ◽  
Thomas J. Joyce

Friction ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 207-227
Author(s):  
Zhuming Bi ◽  
Donald W. Mueller ◽  
Chris W. J. Zhang

AbstractElastohydrodynamic lubrication (EHL) is a type of fluid-film lubrication where hydrodynamic behaviors at contact surfaces are affected by both elastic deformation of surfaces and lubricant viscosity. Modelling of contact interfaces under EHL is challenging due to high nonlinearity, complexity, and the multi-disciplinary nature. This paper aims to understand the state of the art of computational modelling of EHL by (1) examining the literature on modeling of contact surfaces under boundary and mixed lubricated conditions, (2) emphasizing the methods on the friction prediction occurring to contact surfaces, and (3) exploring the feasibility of using commercially available software tools (especially, Simulia/Abaqus) to predict the friction and wear at contact surfaces of objects with relative reciprocating motions.


Sign in / Sign up

Export Citation Format

Share Document