conformation tensor
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 14)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
Yukihito Suzuki ◽  
Masashi Ohnawa ◽  
Naofumi Mori ◽  
Shuichi Kawashima

The goal of this paper is to derive governing equations for complex fluids in a thermodynamically consistent way so that the conservation of energy and the increase of entropy is guaranteed. The model is a system of first-order partial differential equations on density, velocity, energy (or equivalently temperature), and conformation tensor. A barotropic model is also derived. In the one-dimensional case, we express the barotropic model in the form of hyperbolic balance laws, and show that it satisfies the stability condition. Consequently, the global existence of solutions around equilibrium states is proved and the convergence rates is obtained.


2020 ◽  
Vol 10 (22) ◽  
pp. 8140
Author(s):  
Michael McDermott ◽  
Pedro Resende ◽  
Thibaut Charpentier ◽  
Mark Wilson ◽  
Alexandre Afonso ◽  
...  

A viscoelastic turbulence model in a fully-developed drag reducing channel flow is improved, with turbulent eddies modelled under a k–ε representation, along with polymeric solutions described by the finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive model. The model performance is evaluated against a wide variety of direct numerical simulation data, described by different combinations of rheological parameters, which is able to predict all drag reduction (low, intermediate and high) regimes with good accuracy. Three main contributions are proposed: one with a simplified viscoelastic closure for the NLTij term (which accounts for the interactions between the fluctuating components of the conformation tensor and the velocity gradient tensor), by removing additional damping functions and reducing complexity compared with previous models; second through a reformulation for the closure of the viscoelastic destruction term, Eτp, which removes all friction velocity dependence; lastly by an improved modified damping function capable of predicting the reduction in the eddy viscosity and thus accurately capturing the turbulent kinetic energy throughout the channel. The main advantage is the capacity to predict all flow fields for low, intermediate and high friction Reynolds numbers, up to high drag reduction without friction velocity dependence.


2020 ◽  
Vol 43 (11) ◽  
Author(s):  
Markus Hütter ◽  
Peter D. Olmsted ◽  
Daniel J. Read

Abstract. Two alternative routes are taken to derive, on the basis of the dynamics of a finite number of dumbbells, viscoelasticity in terms of a conformation tensor with fluctuations. The first route is a direct approach using stochastic calculus only, and it serves as a benchmark for the second route, which is guided by thermodynamic principles. In the latter, the Helmholtz free energy and a generalized relaxation tensor play a key role. It is shown that the results of the two routes agree only if a finite-size contribution to the Helmholtz free energy of the conformation tensor is taken into account. Using statistical mechanics, this finite-size contribution is derived explicitly in this paper for a large class of models; this contribution is non-zero whenever the number of dumbbells in the volume of observation is finite. It is noted that the generalized relaxation tensor for the conformation tensor does not need any finite-size correction. Graphical abstract


2020 ◽  
Vol 36 (5) ◽  
pp. 691-698
Author(s):  
Che-Yu Lin ◽  
Chao-An Lin

ABSTRACTDirect numerical simulations have been applied to simulate flows with polymer additives. FENE-P (finite-extensible-nonlinear-elastic-Peterlin) dumbbell model solving for the conformation tensor is adopted to investigate the influence of the polymer on the flowfield. Boundary treatments of the conformation tensor on the flowfield are examined first, where boundary condition based on the linear extrapolation scheme provides more accurate results with second-order accurate error norms. Further simulations of the turbulent channel flow at different Weissenberg numbers are also conducted to investigate the influence on drag reduction. Drag reduction increases in tandem with the increase of Weissenberg number and the increase saturates at Weτ~200, where the drag reduction is close to the maximum drag reduction (MDR) limit. At the regime of y+ > 5, the viscous layer thickens with the increase of the Weissenberg number showing a departure from the traditional log-law profile, and the velocity profiles approach the MDR line at high Weissenberg number. The Reynolds stress decreases in tandem with the increase of Weτ, whereas the levels of laminar stress and polymer stress act adversely. However, as the Weissenberg number increases, the proportion of the laminar stress in the total stress increases, and this contributes to the drag reduction of the polymer flow.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2867 ◽  
Author(s):  
Pavlos S. Stephanou ◽  
Ioanna Ch. Tsimouri ◽  
Vlasis G. Mavrantzas

In a recent reformulation of the Marrucci-Ianniruberto constitutive equation for the rheology of entangled polymer melts in the context of nonequilibrium thermodynamics, rather large values of the convective constraint release parameter βccr had to be used in order for the model not to violate the second law of thermodynamics. In this work, we present an appropriate modification of the model, which avoids the splitting of the evolution equation for the conformation tensor into an orientation and a stretching part. Then, thermodynamic admissibility simply dictates that βccr ≥ 0, thus allowing for more realistic values of βccr to be chosen. Moreover, and in view of recent experimental evidence for a transient stress undershoot (following the overshoot) at high shear rates, whose origin may be traced back to molecular tumbling, we have incorporated additional terms into the model accounting, at least in an approximate way, for non-affine deformation through a slip parameter ξ. Use of the new model to describe available experimental data for the transient and steady-state shear and elongational rheology of entangled polystyrene melts and concentrated solutions shows close agreement. Overall, the modified model proposed here combines simplicity with accuracy, which renders it an excellent choice for managing complex viscoelastic fluid flows in large-scale numerical calculations.


Author(s):  
Pavlos Stephanou ◽  
Ioanna Tsimouri ◽  
Vlasis Mavrantzas

In a recent reformulation of the Marrucci-Ianniruberto constitutive equation for the rheology of entangled polymer melts in the context of non-equilibrium thermodynamics, rather large values of the convective constraint release parameter \beta_{ccr} had to be used in order not to violate the second law of thermodynamics. In this work, we present an appropriate modification of the model which avoids the splitting of the evolution equation for the conformation tensor into an orientation and a stretching part. Then, thermodynamic admissibility dictates simply that \beta_{ccr}≥ 0, thus allowing for more realistic values of \beta_{ccr} to be chosen. Moreover, and in view of recent experimental evidence for a transient stress undershoot (following the overshoot) at high shear rates whose origin may be traced back to molecular tumbling, we have incorporated in the model additional terms accounting, at least in an approximate way, for non-affine deformation through a slip parameter \xi. Use of the new model to describe available experimental data for the transient and steady-state shear and elongational rheology of entangled polystyrene melts and solutions shows close agreement. Overall, the modified model proposed here combines simplicity with accuracy, which renders it an excellent choice for managing complex viscoelastic fluid flows in large-scale numerical calculations.


Author(s):  
Ramon Codina ◽  
Laura Moreno

In this paper we present the numerical analysis of a finite element method for a linearized viscoelastic flow problem. In particular, we analyze a linearization of the logarithmic reformulation of the problem, which in particular should be able to produce results for Weissenberg numbers higher than the standard one. In order to be able to use the same interpolation for all the unknowns (velocity, pressure and logarithm of the conformation tensor), we employ a stabilized finite element formulation based on the Variational Multi-Scale concept. The study of the linearized problem already serves to show why the logarithmic reformulation performs better than the standard one for high Weissenberg numbers; this is reflected in the stability and error estimates that we provide in this paper.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1659 ◽  
Author(s):  
Wang

Viscoelasticity drag-reducing flow by polymer solution can reduce pumping energy of pipe flow significantly. One of the simulation manners is direct numerical simulation (DNS). However, the computational time is too long to accept in engineering. Turbulent model is a powerful tool to solve engineering problems because of its fast computational ability. However, its precision is usually low. To solve this problem, we introduce DNS to provide accurate data to construct a high-precision turbulent model. A Reynolds stress model for viscoelastic polymer drag-reducing flow is established. The rheological behavior of the drag-reducing flow is described by the Giesekus constitutive Equation. Compared with the DNS data, mean velocity, mean conformation tensor, drag reduction, and stresses are predicted accurately in low Reynolds numbers and Weissenberg numbers but worsen as the two numbers increase. The computational time of the Reynolds stress model (RSM) is only 1/120,960 of DNS, showing the advantage of computational speed.


2019 ◽  
Vol 44 (3) ◽  
pp. 235-246
Author(s):  
Paul M. Mwasame ◽  
Norman J. Wagner ◽  
Antony N. Beris

Abstract The mechanics of understanding a new application of the bracket theory of Non-Equilibrium Thermodynamics that allows for the incorporation of microstructural inertia effects within conformation tensor-based constitutive models of macroscopic material behavior is presented. Introducing inertia effects generally requires the replacement of a first order in time evolution equation for the conformation tensor by a second order one. Through the analysis of a simple damped oscillator we bring forward here the close connection to the structural dissipation brackets present in the two cases, with the weights being inverted as one transitions from the inertialess to the inertial description. Moreover, one may also describe inertial effects in material flow in certain situations through a simple modification of the first order evolution equation for the conformation tensor, which consists of adding a new non-affine term that couples the conformation and the vorticity tensors, as detailed in a recent publication (P. M. Mwasame, N. J. Wagner and A. N. Beris, Phys. Fluids, 30 (2018), 030704). As shown there, when applied to the low particle Reynolds flow of dilute emulsions, this reduced inertial flow model provides predictions consistent with literature-available microscopically based asymptotic results.


Sign in / Sign up

Export Citation Format

Share Document