Fault-slip analysis in the metaophiolites of the Voltri Massif: constraints for the tectonic evolution at the Alps/Apennine boundary

2009 ◽  
Vol 44 (2) ◽  
pp. 225-240 ◽  
Author(s):  
Laura Federico ◽  
Chiara Spagnolo ◽  
Laura Crispini ◽  
Giovanni Capponi
1995 ◽  
pp. 289-304 ◽  
Author(s):  
S. M. Schmid ◽  
O. A. Pfiffner ◽  
G. Schönborn ◽  
N. Froitzheim ◽  
E. Kissling

2021 ◽  
Vol 9 ◽  
Author(s):  
Jure Atanackov ◽  
Petra Jamšek Rupnik ◽  
Jernej Jež ◽  
Bogomir Celarc ◽  
Matevž Novak ◽  
...  

We present the compilation of a new database of active faults in Slovenia, aiming at introducing geological data for the first time as input for a new national seismic hazard model. The area at the junction of the Alps, the Dinarides, and the Pannonian Basin is moderately seismically active. About a dozen Mw > 5.5 earthquakes have occurred across the national territory in the last millennium, four of which in the instrumental era. The relative paucity of major earthquakes and low to moderate fault slip rates necessitate the use of geologic input for a more representative assessment of seismic hazard. Active fault identification is complicated by complex regional structural setting due to overprinting of different tectonic phases. Additionally, overall high rates of erosion, denudation and slope mass movement processes with rates up to several orders of magnitude larger than fault slip rates obscure the surface definition of faults and traces of activity, making fault parametrization difficult. The presented database includes active, probably active and potentially active faults with trace lengths >5 km, systematically compiled and cataloged from a vast and highly heterogeneous dataset. Input data was mined from published papers, reports, studies, maps, unpublished reports and data from the Geological Survey of Slovenia archives and dedicated studies. All faults in the database are fully parametrized with spatial, geometric, kinematic and activity data with parameter descriptors including data origin and data quality for full traceability of input data. The input dataset was compiled through an extended questionnaire and a set of criteria into a homogenous database. The final database includes 96 faults with 240 segments and is optimized for maximum compatibility with other current maps of active faults at national and EU levels. It is by far the most detailed and advanced map of active faults in Slovenia.


2021 ◽  
Author(s):  
Fabrizio Piana ◽  
Anna d'Atri ◽  
Andrea Irace

<p>The Alps and the westernmost part of Apennines physically join in NW Italy (Piemonte), where the Apennine thrusts interfered, since Late Oligocene, with both the inner boundary faults of the uplifting Alps axial belt and the outer fronts of the Alpine antithetic retrobelt (the Southern Alps). As the two orogenic belts had been intergrowing since the late Oligocene, coeval syn-orogenic basins developed on both, either as separate depocenters or, more frequently, to form a continuous sedimentary domain, strongly controlled by the tectonic evolution of the Alps-Apennines orogenic system.  These syn-orogenic basins both recorded the main stages of the Alps (neoAlpine events) and Apennines tectonic evolution, whose evidence (mostly represented by regional-scale unconformities) can be correlated within each basin and across them. Correlations (in terms of sharing common geologic events) can be found also with the middle Eocene to lower Oligocene basal part of the Alpine foreland basin succession, which extended continuously on the external side of the Western Alps. This contribution will briefly discuss this complex matter in an integrated Alpine-Apennines perspective and in the frame of the post-Eocene evolution of the Western Mediterranean area.</p>


1989 ◽  
Vol 45 (1) ◽  
pp. 153-171 ◽  
Author(s):  
S. M. Schmid ◽  
H. R. Aebli ◽  
F. Heller ◽  
A. Zingg
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document