Implementation of sedimentary facies and diagenesis on the reservoir quality of the Aquitanian‐Burdigalian Rudeis Formation in the Gulf of Suez, Egypt: A comparative surface and subsurface study

2019 ◽  
Vol 55 (6) ◽  
pp. 4543-4563 ◽  
Author(s):  
Bassem S. Nabawy ◽  
Ahmed S. Mansour ◽  
Mohamed A. Rashed ◽  
Walaa S.M. Afify
2021 ◽  
Vol 11 (4) ◽  
pp. 1643-1666
Author(s):  
Ahmed M. Elatrash ◽  
Mohammad A. Abdelwahhab ◽  
Hamdalla A. Wanas ◽  
Samir I. El-Naggar ◽  
Hasan M. Elshayeb

AbstractThe quality of a hydrocarbon reservoir is strongly controlled by the depositional and diagenetic facies nature of the given rock. Therefore, building a precise geological/depositional model of the reservoir rock is critical to reducing risks while exploring for petroleum. Ultimate reservoir characterization for constructing an adequate geological model is still challenging due to the in general insufficiency of data; particularly integrating them through combined approaches. In this paper, we integrated seismic geomorphology, sequence stratigraphy, and sedimentology, to efficiently characterize the Upper Miocene, incised-valley fill, Abu Madi Formation at South Mansoura Area (Onshore Nile Delta, Egypt). Abu Madi Formation, in the study area, is a SW-NE trending reservoir fairway consisting of alternative sequences of shales and channel-fill sandstones, of the Messinian age, that were built as a result of the River Nile sediment supply upon the Messinian Salinity Crisis. Hence, it comprises a range of continental to coastal depositional facies. We utilized dataset including seismic data, complete set of well logs, and core samples. We performed seismic attribute analysis, particularly spectral decomposition, over stratal slices to outline the geometry of the incised-valley fill. Moreover, well log analysis was done to distinguish different facies and lithofacies associations, and define their paleo-depositional environments; a preceding further look was given to the well log-based sequence stratigraphic setting as well. Furthermore, mineralogical composition and post-depositional diagenesis were identified performing petrographical analysis of some thin sections adopted from the core samples. A linkage between such approaches, performed in this study, and their impact on reservoir quality determination was aimed to shed light on a successful integrated reservoir characterization, capable of giving a robust insight into the depositional facies, and the associated petroleum potential. The results show that MSC Abu Madi Formation constitutes a third-order depositional sequence of fluvial to estuarine units, infilling the Eonile-canyon, with five sedimentary facies associations; overbank mud, fluvial channel complex, estuarine mud, tidal channels, and tidal bars; trending SW-NE with a Y-shape channel geometry. The fluvial facies association (zone 1 and 3) enriches coarse-grained sandstones, deposited in subaerial setting, with significantly higher reservoir quality, acting as the best reservoir facies of the area. Although the dissolution of detrital components, mainly feldspars, enhanced a secondary porosity, improving reservoir quality of MSC Abu Madi sediments, continental fluvial channel facies represent the main fluid flow conduits, where marine influence is limited.


GeoArabia ◽  
1997 ◽  
Vol 2 (4) ◽  
pp. 385-400 ◽  
Author(s):  
Abdulrahman S. Alsharhan ◽  
Mohammed G. Salah

ABSTRACT The Paleozoic-Lower Cretaceous Nubian Sandstone is a thick sequence of up to 1,200 meters of clastic and thin carbonate sediments. In ascending order it is classified into the following groups and formations: Qebliat Group, Umm Bogma Formation, Ataqa Group and El-Tih Group. This sequence is composed mainly of sandstones with shale and minor carbonate interbeds and was deposited in continental and fluviomarine to marine settings. Petrographically, two main facies of Nubian Sandstone can be recognized in the Gulf of Suez: quartzarenite and quartzwackes. Both contain subfacies that are different in their secondary components, cement and matrix types, reflecting their different depositional environments and diagenetic histories. The pre-Cenomanian Nubian Sandstone is one of the most prolific reservoirs in the Gulf of Suez oil province. These sandstones have intervals with good reservoir quality throughout the basin, with net pay thickness of up to 450 meters, and net sand ratios ranging from 60% to 90%. Porosity varies from 10% to 29%, and permeability from 70-850 millidarcies. The quality of the reservoir depends on its shaliness, diagenetic history and the depth of burial (compaction). The Nubian Sandstone still has a high potential as a reservoir, particularly in the northern sector of the Gulf of Suez where few wells have specifically targeted this interval.


Sign in / Sign up

Export Citation Format

Share Document