Prospective purification and characterization of Müller glia in the mouse retina regeneration assay

Glia ◽  
2017 ◽  
Vol 65 (5) ◽  
pp. 828-847 ◽  
Author(s):  
Patrick Schäfer ◽  
Mike O. Karl
2019 ◽  
Vol 33 (8) ◽  
pp. 8745-8758 ◽  
Author(s):  
Onkar B. Sawant ◽  
Vijay K. Jidigam ◽  
Rebecca D. Fuller ◽  
Olivia F. Zucaro ◽  
Cristel Kpegba ◽  
...  

2019 ◽  
Author(s):  
Nikolas L. Jorstad ◽  
Matthew S. Wilken ◽  
Levi Todd ◽  
Paul Nakamura ◽  
Nick Radulovich ◽  
...  

AbstractMüller glia can serve as a source for retinal regeneration in some non-mammalian vertebrates. Recently we found that this process can be induced in mouse Müller glia after injury, by combining transgenic expression of the proneural transcription factor Ascl1 and the HDAC inhibitor TSA. However, new neurons are only generated from a subset of Müller glia in this model, and identifying factors that limit Ascl1-mediated MG reprogramming could potentially make this process more efficient, and potentially useful clinically. One factor that limits neurogenesis in some non-mammalian vertebrates is the STAT pathway activation that occurs in Müller glia in response to injury. In this report, we tested whether injury induced STAT activation hampers the ability of Ascl1 to reprogram Müller glia into retinal neurons. Using a STAT inhibitor, in combination with our previously described reprogramming paradigm, we found a large increase in the ability of Müller glia to generate neurons, similar to those we described previously. Single-cell RNA-seq showed that the progenitor-like cells derived from Ascl1-expressing Müller glia have a higher level of STAT signaling than those that become neurons. Using Ascl1 ChIP-seq and DNase-seq, we found that developmentally inappropriate Ascl1 binding sites (that were unique to the overexpression context) had enrichment for the STAT binding motif. This study provides evidence that STAT pathway activation reduces the efficiency of Ascl1-mediated reprogramming in Müller glia, potentially by directing Ascl1 to inappropriate targets.


Glia ◽  
2011 ◽  
Vol 59 (7) ◽  
pp. 1033-1046 ◽  
Author(s):  
Sandrine Joly ◽  
Vincent Pernet ◽  
Marijana Samardzija ◽  
Christian Grimm

2008 ◽  
Vol 87 (5) ◽  
pp. 433-444 ◽  
Author(s):  
Ryan Thummel ◽  
Sean C. Kassen ◽  
Jennifer M. Enright ◽  
Craig M. Nelson ◽  
Jacob E. Montgomery ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Mi-Sun Lee ◽  
Jin Wan ◽  
Daniel Goldman

Neuronal degeneration in the zebrafish retina stimulates Müller glia (MG) to proliferate and generate multipotent progenitors for retinal repair. Controlling this proliferation is critical to successful regeneration. Previous studies reported that retinal injury stimulates pSmad3 signaling in injury-responsive MG. Contrary to these findings, we report pSmad3 expression is restricted to quiescent MG and suppressed in injury-responsive MG. Our data indicates that Tgfb3 is the ligand responsible for regulating pSmad3 expression. Remarkably, although overexpression of either Tgfb1b or Tgfb3 can stimulate pSmad3 expression in the injured retina, only Tgfb3 inhibits injury-dependent MG proliferation; suggesting the involvement of a non-canonical Tgfb signaling pathway. Furthermore, inhibition of Alk5, PP2A or Notch signaling rescues MG proliferation in Tgfb3 overexpressing zebrafish. Finally, we report that this Tgfb3 signaling pathway is active in zebrafish MG, but not those in mice, which may contribute to the different regenerative capabilities of MG from fish and mammals.


2017 ◽  
Vol 525 (8) ◽  
pp. spc1-spc1 ◽  
Author(s):  
Jingjing Wang ◽  
Matthew L. O’Sullivan ◽  
Dibyendu Mukherjee ◽  
Vanessa M. Puñal ◽  
Sina Farsiu ◽  
...  

iScience ◽  
2018 ◽  
Vol 7 ◽  
pp. 68-84 ◽  
Author(s):  
Soumitra Mitra ◽  
Poonam Sharma ◽  
Simran Kaur ◽  
Mohammad Anwar Khursheed ◽  
Shivangi Gupta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document