retinal injury
Recently Published Documents


TOTAL DOCUMENTS

294
(FIVE YEARS 72)

H-INDEX

33
(FIVE YEARS 5)

Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 15
Author(s):  
Yunjun Liu ◽  
Zixin Guo ◽  
Shengnan Wang ◽  
Yixiang Liu ◽  
Ying Wei

Fucoxanthin, a special xanthophyll derived from marine algae, has increasingly attracted attention due to its diverse biological functions. However, reports on its ocular benefits are still limited. In this work, the ameliorative effect of fucoxanthin on visible light and lipid peroxidation-induced phagocytosis disruption in retinal pigment epithelium (RPE) cells was investigated in vitro. Marked oxidative stress, inflammation, and phagocytosis disruption were evident in differentiated RPE cells following their exposure to visible light under a docosahexaenoic acid (DHA)-rich environment. Following pretreatment with fucoxanthin, however, the activated nuclear factor erythroid-derived-2-like 2 (Nrf2) signaling pathway was observed and, furthermore, when the fucoxanthin -pretreated RPE cells were irradiated with visible light, intracellular reactive oxygen species (ROS), malondialdehyde (MDA) levels and inflammation were obviously suppressed, while phagocytosis was significantly improved. However, following the addition of Nrf2 inhibitor ML385, the fucoxanthin exhibited no ameliorative effects on the oxidative stress, inflammation, and phagocytosis disruption in the RPE cells, thus indicating that the ameliorative effect of fucoxanthin on the phagocytosis of RPE cells is closely related to the Nrf2 signaling pathway. In conclusion, these results suggest that fucoxanthin supplementation might be beneficial to the prevention of visible light-induced retinal injury.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ting Xie ◽  
Xiaodong Chen ◽  
Wenyi Chen ◽  
Sien Huang ◽  
Xinye Peng ◽  
...  

Curcumin is a natural polyphenol compound with anti-diabetic, anti-oxidative, and anti-inflammatory effects. Although many studies have reported the protective effect of curcumin in diabetes mellitus or diabetic nephropathy, there is a lack of research on curcumin in diabetic retinopathy. The purpose of this study was to investigate the therapeutic effects of curcumin on the diabetic retinal injury. Streptozotocin (STZ)-induced diabetic rats (60, n = 12 each) were respectively given curcumin orally (200 mg/kg/day), insulin subcutaneously (4–6 IU/day), and combined therapy with curcumin and insulin for 4 weeks. Retinal histopathological changes, oxidative stress markers, and transcriptome profiles from each group were observed. Curcumin, insulin, or combination therapy significantly reduced blood glucose, alleviated oxidative stress, and improved pathological damage in diabetic rats. Curcumin not only significantly reduced retinal edema but also had a better anti-photoreceptor apoptosis effect than insulin. In the early stage of diabetes, the enhancement of oxidative stress in the retina induced the adaptive activation of the nuclear factor E2-associated factor 2 (Nrf2) pathway. Treatment of curcumin alleviated the compensatory activation of the Nrf2 pathway induced by oxidative stress, by virtue of its antioxidant ability to transfer hydrogen atoms to free radicals. When curcumin combined with insulin, the effect of maintaining Nrf2 pathway homeostasis in diabetic rats was better than that of insulin alone. Transcriptomic analyses revealed that curcumin either alone, or combined with insulin, inhibited the AGE-RAGE signaling pathway and the extracellular matrix (ECM)-receptor interaction in the diabetic retina. Thus, at the early stage of diabetes, curcumin can be used to alleviate diabetic retinal injury through its anti-oxidative effect. If taking curcumin as a potential complementary therapeutic option in combination with antihyperglycemic agents, which would lead to more effective therapeutic outcomes against diabetic complications.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mengdan Yu ◽  
Lijun Zhang ◽  
Shasha Sun ◽  
Zhenhua Zhang

Abstract Background Diabetic retinopathy (DR) is a common and potentially devastating microvascular complication of diabetes mellitus (DM). The main features of DR are inflammation and oxidative damage. Gliquidone (GLI) is confirmed to be a hypoglycemic drug by oral administration. The current study is aimed to investigate the role and mechanism of GLI on the pathogenesis of DR. Methods High glucose (HG)-induced human retinal endothelial cells (HRECs) were used to explore the anti-inflammatory and anti-oxidant effects of GLI on DR in vitro. Streptozotocin (STZ)-induced DM rats were used to investigate the effects of GLI on retinal structures, inflammation, and oxidative stress. The levels of SIRT1/Notch1 pathway-related proteins were determined by western blotting. Results GLI treatment promoted the viability and inhibited the apoptosis of HG-induced HRECs. Meanwhile, the levels of interleukin (IL)-6, IL-1β, tumour necrosis factor alpha and reactive oxygen species were suppressed, while both catalase and superoxide dismutase were elevated after GLI treatment in HG-induced HRECs. Furthermore, we found that Silencing information regulator 2 related enzyme 1 (SIRT1) silencing reversed the inhibiting effects of GLI on the levels of protein Notch1 and effector genes Hes1 and Hey2. Similar anti-inflammatory and anti-oxidant effects of GLI in STZ-induced DM rats were observed. Additionally, GLI administration also repressed vascular hyperpermeability in vivo. Conclusion GLI may be an effective agent to improve DR through repression of inflammation and oxidative stress via SIRT1/Notch1 pathway.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3265
Author(s):  
Nicole Schmitner ◽  
Christina Recheis ◽  
Jakob Thönig ◽  
Robin A. Kimmel

Diabetic retinopathy is a frequent complication of longstanding diabetes, which comprises a complex interplay of microvascular abnormalities and neurodegeneration. Zebrafish harboring a homozygous mutation in the pancreatic transcription factor pdx1 display a diabetic phenotype with survival into adulthood, and are therefore uniquely suitable among zebrafish models for studying pathologies associated with persistent diabetic conditions. We have previously shown that, starting at three months of age, pdx1 mutants exhibit not only vascular but also neuro-retinal pathologies manifesting as photoreceptor dysfunction and loss, similar to human diabetic retinopathy. Here, we further characterize injury and regenerative responses and examine the effects on progenitor cell populations. Consistent with a negative impact of hyperglycemia on neurogenesis, stem cells of the ciliary marginal zone show an exacerbation of aging-related proliferative decline. In contrast to the robust Müller glial cell proliferation seen following acute retinal injury, the pdx1 mutant shows replenishment of both rod and cone photoreceptors from slow-cycling, neurod-expressing progenitors which first accumulate in the inner nuclear layer. Overall, we demonstrate a diabetic retinopathy model which shows pathological features of the human disease evolving alongside an ongoing restorative process that replaces lost photoreceptors, at the same time suggesting an unappreciated phenotypic continuum between multipotent and photoreceptor-committed progenitors.


2021 ◽  
pp. 108826
Author(s):  
Kota Sato ◽  
Taimu Sato ◽  
Michiko Ohno-Oishi ◽  
Mikako Ozawa ◽  
Shigeto Maekawa ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Yimin Wang ◽  
Xiaohuan Zhao ◽  
Min Gao ◽  
Xiaoling Wan ◽  
Yinong Guo ◽  
...  

AbstractPhotoreceptor death and neurodegeneration is the leading cause of irreversible vision loss. The inflammatory response of microglia plays an important role in the process of neurodegeneration. In this study, we chose retinal detachment as the model of photoreceptor degeneration. We found Myosin 1f was upregulated after retinal detachment, and it was specifically expressed in microglia. Deficiency of myosin 1f protected against photoreceptor apoptosis by inhibiting microglia activation. The elimination of microglia can abolish the protective effect of myosin 1f deficiency. After stimulation by LPS, microglia with myosin 1f deficiency showed downregulation of the MAPK and AKT pathways. Our results demonstrated that myosin 1f plays a crucial role in microglia-induced neuroinflammation after retinal injury and photoreceptor degeneration by regulating two classic inflammatory pathways and thereby decreasing the expression of inflammatory cytokines. Knockout of myosin 1f reduces the intensity of the immune response and prevents cell death of photoreceptor, suggesting that myosin 1f can be inhibited to prevent a decline in visual acuity after retinal detachment.


2021 ◽  
Vol 22 (9) ◽  
pp. 746-756
Author(s):  
Xue Yang ◽  
Xiaowei Yu ◽  
Zhenni Zhao ◽  
Yuqing He ◽  
Jiamin Zhang ◽  
...  

Glia ◽  
2021 ◽  
Vol 69 (12) ◽  
pp. 2882-2898
Author(s):  
Aresh Sahu ◽  
Sulochana Devi ◽  
Jonathan Jui ◽  
Daniel Goldman

Author(s):  
Mukadder Sunar ◽  
Gulce Naz Yazici ◽  
Renad Mammadov ◽  
Nezahat Kurt ◽  
Yusuf Kemal Arslan ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document